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Introduction

Calibrating deep neural networks (DNNs) has been attracting an increased attention recently, which

is critical to obtain trustworthy models. To address this issue, our contributions are as follows:

Introduce a constrained-optimization perspective unifying previous calibration losses.

Propose a simple and flexible generalization based on inequality constraints, which imposes a

controllable margin on logit distances.

Achieve state-of-the-art calibration performances over a variety of benchmarks, including

standard/fine-grained image classification, semantic segmentation and text classification.

Background : calibration
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Figure: Calibration visualizations (reliability diagrams) and metrics (ECE) of different methods on Tiny-ImageNet.

Calibrated models. Perfectly calibrated models are those for which the predicted confidence for

each sample is equal to the model accuracy : p̂ = P(ŷ = y|p̂).
Miscalibration of DNNs is mainly caused by overfitting due to the minimization of the cross-entropy

(CE) during training, which implicitly pushes softmax vectors s towards the vertices of the simplex,
thereby magnifying the distances between the largest logit maxk(lk) and the rest of the logits.

A constrained-optimization perspective of calibration

Let us first define the vector of logit distances between the winner class and the rest as:

d(l) = (max
j

(lj) − lk)1≤k≤K ∈ RK
(1)

Previous state-of-the-art calibration losses, i.e., label smoothing (LS), focal loss (FL), and explicit

confidence penalty (ECP), could be approximately viewed as different soft penalty functions for

imposing the same logit-distance equality constraint on CE:

d(l) = 0 (2)

Clearly, this constraint is a trivial and non-informative solution.

Margin-based Label Smoothing
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Figure: Illustration of the linear (left) and

margin-based (right) penalties for imposing

logit-distance constraints, along with the

corresponding derivatives.

Though Eq. 2 is not reached in practice with soft penalties

jointly with CE, it might prevent from reaching the best

compromise between the discriminative performance and

calibration.

To address this issue, we propose a generalized inequality

constraint with a positive and controllable margin:

min LCE s.t. d(l) ≤ m, m > 0 (3)

The figure in the left illustrates the differences between

the linear penalty for equality constraint in Eq. 2 and our

margin-based inequality. The gradient of our method is

back-propagated only on those logits where the distances

are above the margin. In practice, we resort to a simpler

unconstrained approximation with ReLU function:

min LCE + λ
∑

k

max(0, max
j

(lj) − lk − m) (4)

Results

Datasets. Image classification: CIFAR-10 and Tiny-ImageNet; Fine-grained image classification:

CUB-200-2011; Semantic segmentation: PASCAL VOC 2012; Text classification: 20 Newsgroups.

Metrics. Calibration: expected calibration error (ECE) and its variant, Adaptive ECE (AECE); Discrim-

ination: accuracy (Acc) for classification and mean intersection over union (mIoU) for segmentation.

Table: Calibration (top) and classification (bottom) performances on two popular image classification benchmarks.

Dataset Model
CE ECP LS FL FLSD Ours (m=0) Ours

ECE AECE ECE AECE ECE AECE ECE AECE ECE AECE ECE AECE ECE AECE

Tiny-ImageNet
R-50 3.73 3.69 4.00 3.92 3.17 3.16 2.96 3.12 2.91 2.95 2.50 2.58 1.64 1.73

R-101 4.97 4.97 4.68 4.66 2.20 2.21 2.55 2.44 4.91 4.91 1.89 1.95 1.62 1.68

CIFAR-10
R-50 5.85 5.84 3.01 2.99 2.79 3.85 3.90 3.86 3.84 3.60 3.72 4.29 1.16 3.18

R-101 5.74 5.73 5.41 5.40 3.56 4.68 4.60 4.58 4.58 4.57 3.07 3.97 1.38 3.25

Dataset Model CE ECP LS FL FLSD
Ours (m=0) Ours

Acc ∆ Acc ∆

Tiny-ImageNet
R-50 65.02 64.98 65.78 63.09 64.09 65.15 -0.63 64.74 -1.04

R-101 65.62 65.69 65.87 62.97 62.96 65.72 -0.15 65.81 -0.06

CIFAR-10
R-50 93.20 94.75 94.87 94.82 94.77 94.76 -0.49 95.25 +0.38

R-101 93.33 93.35 93.23 92.42 92.38 95.36 +0.23 95.13 -0.23

Results

Table: CUB-200-2011

Method Acc ECE

CE 73.09 6.75

ECP 73.51 5.55

LS 74.51 5.16

FL 72.87 8.41

Ours 74.56 2.78

Table: Pascal VOC 2012

Method mIoU ECE

CE 70.92 8.26

ECP 71.16 8.31

LS 71.00 9.35

FL 69.99 11.44

Ours 71.20 7.94

Table: 20 Newsgroups

Method Acc ECE

CE 67.01 22.75

ECP 66.48 22.97

LS 67.14 8.07

FL 66.08 10.80

Ours 67.89 5.40

CE LS FL OursImage & GT
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Figure: Visual results on semantic segmentation. In the left, we give the original image with ground-truth (GT), then we

present the confidence map (a) and the reliability diagram (b) with the ECE (%) score for each method. The value of

confidence map represent the predicted confidence, i.e., the element of the soft-max probability for the winner class. It

is noted that deeper color denotes higher confidence in the map, as shown in the legend at the upper right corner.

Conclusion

We introduce a constrained-optimization perspective unifying previous calibration

losses and then propose the margin-based label smoothing method.

Unlike previous losses, our method always push the model to a non-trivial and

informative solution, thus achieving better compromise between discriminative

performance and calibration.

Future works include comprehensive studies on data/domain distributional shift,

and improving the optimization algorithm.


