

ÉCOLE DE

**TECHNOLOGIE** 

SUPÉRIEURE

## Introduction

Calibrating deep neural networks (DNNs) has been attracting an increased attention recently, which is critical to obtain trustworthy models. To address this issue, our contributions are as follows:

- Introduce a constrained-optimization perspective unifying previous calibration losses. • Propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances.
- Achieve state-of-the-art calibration performances over a variety of benchmarks, including standard/fine-grained image classification, semantic segmentation and text classification.



# **Background : calibration**

Figure: Calibration visualizations (reliability diagrams) and metrics (ECE) of different methods on Tiny-ImageNet.

**Calibrated models.** Perfectly calibrated models are those for which the predicted confidence for each sample is equal to the model accuracy :  $\hat{p} = \mathbb{P}(\hat{y} = y | \hat{p})$ .

**Miscalibration of DNNs** is mainly caused by overfitting due to the minimization of the cross-entropy (CE) during training, which implicitly pushes softmax vectors  $\mathbf{s}$  towards the vertices of the simplex, thereby magnifying the distances between the largest logit  $\max_k(l_k)$  and the rest of the logits.

# A constrained-optimization perspective of calibration

Let us first define the vector of logit distances between the winner class and the rest as:

$$\mathbf{d}(\mathbf{l}) = (\max_{j}(l_{j}) - l_{k})_{1 \le k \le K} \in \mathbb{R}^{K}$$

Previous state-of-the-art calibration losses, i.e., label smoothing (LS), focal loss (FL), and explicit confidence penalty (ECP), could be approximately viewed as **different soft penalty functions** for imposing the same logit-distance equality constraint on CE:

$$\mathbf{d}(\mathbf{l}) = \mathbf{0}$$

Clearly, this constraint is a trivial and non-informative solution.

# The Devil is in the Margin: Margin-based Label Smoothing for Network Calibration

Bingyuan Liu<sup>1</sup> Ismail Ben Ayed<sup>1</sup> Adrian Galdran<sup>2</sup> Jose Dolz<sup>1</sup>

<sup>1</sup>ÉTS Montreal, Canada <sup>2</sup>Universitat Pompeu Fabra, Spain

# Margin-based Label Smoothing

Though Eq. 2 is not reached in practice with soft penalties jointly with CE, it might prevent from reaching the best compromise between the discriminative performance and calibration.

### min

The figure in the left illustrates the differences between the linear penalty for equality constraint in Eq. 2 and our margin-based inequality. The gradient of our method is back-propagated only on those logits where the distances are above the margin. In practice, we resort to a simpler unconstrained approximation with ReLU function:

min  $\mathcal{L}_{CE} + \lambda \sum \max(0, \max)$ 

# Results

**Datasets**. Image classification: CIFAR-10 and Tiny-ImageNet; Fine-grained image classification: CUB-200-2011; Semantic segmentation: PASCAL VOC 2012; Text classification: 20 Newsgroups.

Metrics. Calibration: expected calibration error (ECE) and its variant, Adaptive ECE (AECE); Discrimination: accuracy (Acc) for classification and mean intersection over union (mIoU) for segmentation.

Table: Calibration (top) and classification (bottom) performances of

| Dataset     |     | Model         | C            | E             | E              | СР                  | L                              | S                              | F              | ٦L                    | F                      | LSD              | Ours                       | (m=0)                      | 0            | urs                      |
|-------------|-----|---------------|--------------|---------------|----------------|---------------------|--------------------------------|--------------------------------|----------------|-----------------------|------------------------|------------------|----------------------------|----------------------------|--------------|--------------------------|
|             |     |               | ECE          | AECE          | ECE            | AECE                | ECE                            | AECE                           | ECE            | AEC                   | e ece                  | e aece           | E ECE                      | AECE                       | ECE          | AEC                      |
| Finy-ImageN | let | R-50<br>R-101 | 3.73<br>4.97 | 3.69<br>4.97  | 4.00<br>4.68   | 3.92<br>4.66        | 3.17<br>2.20                   | 3.16<br>2.21                   | 2.96<br>2.55   | 3.12<br>2.44          | 2 2.92<br>4 4.92       | 1 2.95<br>1 4.91 | <u>2.50</u><br><u>1.89</u> | <u>2.58</u><br><u>1.95</u> | 1.64<br>1.62 | 1.73<br>1.63             |
| CIFAR-10    |     | R-50<br>R-101 | 5.85<br>5.74 | 5.84<br>5.73  | 3.01<br>5.41   | <b>2.99</b><br>5.40 | <u>2.79</u><br>3.56            | 3.85<br>4.68                   | 3.90<br>4.60   | 3.86<br>4.58          | 5 3.84<br>8 4.58       | 4 3.60<br>3 4.57 | 3.72<br><u>3.07</u>        | 4.29<br><u>3.97</u>        | 1.16<br>1.38 | <u>3.1</u><br><b>3.2</b> |
|             |     |               |              |               |                |                     |                                |                                |                |                       |                        |                  |                            |                            |              |                          |
|             | Da  | taset         | 1            | Model         | CE             | ECP                 | , LS                           | FL                             | . FL           | .SD                   | Ours (                 | m=0)             | Οι                         | urs                        |              |                          |
|             |     |               |              |               |                |                     |                                |                                |                |                       | Acc                    | Δ                | Acc                        | Δ                          |              |                          |
|             | Tin | y-Image       | eNet f       | R-50<br>R-101 | 65.02<br>65.62 | 2 64.98<br>2 65.69  | 8 <b>65.7</b><br>9 <b>65.8</b> | <b>78</b> 63.<br><b>37</b> 62. | 09 64<br>97 62 | 09 <u>6</u><br>2.96 6 | <u>5.15</u><br>55.72   | -0.63<br>-0.15   | 64.74<br><u>65.81</u>      | -1.04<br>-0.06             |              |                          |
|             | CIF | AR-10         | F            | R-50<br>R-101 | 93.20<br>93.33 | ) 94.7<br>3 93.3    | 5 <u>94.8</u><br>5 93.2        | <u>37</u> 94.<br>23 92.        | 82 94<br>42 92 | .77 9<br>.38 <b>9</b> | 94.76<br>9 <b>5.36</b> | -0.49<br>+0.23   | <b>95.25</b><br>95.13      | +0.38<br>-0.23             |              |                          |

(2)



Figure: Illustration of the linear (left) and margin-based (right) penalties for imposing logit-distance constraints, along with the corresponding derivatives.

### To address this issue, we propose **a generalized inequality** constraint with a positive and controllable margin:

$$\mathcal{L}_{CE}$$
 s.t.  $\mathbf{d}(\mathbf{l}) \leq \mathbf{m}, \quad \mathbf{m} > \mathbf{0}$  (3)

$$\kappa(l_j) - l_k - m)$$

(4)

| h   | $\pm 100$ | nonular | imago   | classification | honchmarke    |
|-----|-----------|---------|---------|----------------|---------------|
| JII | LVVU      | μυμιαι  | IIIIage | Classification | DELICITIALKS. |
|     |           |         | 0       |                |               |

| Table: CUB-200-2011   |                                  |                              |  |  |  |
|-----------------------|----------------------------------|------------------------------|--|--|--|
| Method                | Acc                              | ECE                          |  |  |  |
| CE<br>ECP<br>LS<br>FL | 73.09<br>73.51<br>74.51<br>72.87 | 6.75<br>5.55<br>5.16<br>8.41 |  |  |  |
| Ours                  | 74.56                            | 2.78                         |  |  |  |



- performance and calibration.
- and improving the optimization algorithm.



Figure: Visual results on semantic segmentation. In the left, we give the original image with ground-truth (GT), then we present the confidence map (a) and the reliability diagram (b) with the ECE (%) score for each method. The value of confidence map represent the predicted confidence, i.e., the element of the soft-max probability for the winner class. It is noted that deeper color denotes higher confidence in the map, as shown in the legend at the upper right corner.

# Conclusion

• We introduce a constrained-optimization perspective unifying previous calibration losses and then propose the margin-based label smoothing method.

 Unlike previous losses, our method always push the model to a non-trivial and informative solution, thus achieving better compromise between discriminative Future works include comprehensive studies on data/domain distributional shift