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a b s t r a c t

Spatial Pyramid Matching is a successful extension of bag-of-feature model to embed spatial information
of local features, in which the image is divided into a sequence of increasingly finer girds, and the grids
are taken as uniform spatial partitions in ad-hoc manner without any theoretical motivation. Obviously,
the uniform spatial partition cannot adapt to different spatial distribution across image categories.
To this end, we propose a data-driven approach to adaptively learn the discriminative spatial partitions
corresponding to each class, and explore them for image classification. First, a set of over-complete
spatial partitions covering kinds of spatial distribution of local features are created in a flexible manner,
and we concatenate the feature representations of each partitioned region. Then we adopt a discrimina-
tive learning formulation with the group sparse constraint to find a sparse mapping from the feature
representation to the label space. To further enhance the robustness of the model, we compress the
feature representation by removing the dimensions corresponding to those unimportant partitioned
regions, and explore the compressed representation to generate a multi-region matching kernel
prepared to train a one-versus-others SVM classifier. The experiments on three object datasets
(i.e. Caltech-101, Caltech-256, Pascal VOC 2007), and one scene dataset (i.e. 15-Scenes) demonstrate
the effectiveness of our proposed method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the bag-of-feature (BoF) model [5] becomes
very popular in image classification systems. The BoF model starts
from well-engineered local features, such as SIFT [18], HOG [6] and
color invariant descriptors [25], quantizes them into distinct visual
words, and then computes a histogram representation as the
image representation. The BoF-based representation describes an
image as an orderless collection of local features, while the spatial
layout of the features is completely neglected.

To overcome this problem, one popular extension, called as
Spatial Pyramid Matching (SPM) [15], has been shown effective for
image representation. It requires to first partition each image into
a fixed sequence of increasingly finer uniform grids (e.g. 1�1,
2�2, 4�4), and then concatenates the BoF features in each grids
forming a high dimensional image feature, while the grids in the
same level are equally treated for concatenation. However, images
in different classes often have different spatial distribution about
target and background context, contributing different discrimi-
native abilities to recognize a certain category. For instance, as
shown in Fig. 1, the airplanes tend to locate in the middle of the
image and the shown spatial partitioned regions (learned by the

proposed method) separate the object and background properly,
providing more reasonable and semantical spatial information
than traditional SPM. In these cases which are common for natural
images, the uniform spatial partitions and their equal treatment in
SPM fail to reflect reasonable spatial information. We believe that
the optimal spatial partition for classification should be learned
with some discriminative priors, in order to segment an image
into some semantically meaningful regions and crudely indicate
the discriminative object regions.

To address above issues, this paper proposes a data-driven
approach to learn the discriminative spatial partitions adaptable to
each image class and explore them for image classification. In our
work, we first create various spatial partitions of images as many
as possible, and concatenate the feature of each partitioned region
as the image representation. Second, we attempt to train a linear
classifier by sparsely mapping the concatenated representations of
samples into the label space. In particular, we deem that only a few
partitioned regions among all are helpful to image classification
and present a group sparse constrained discriminative formula-
tion, in which the feature dimensions corresponding to the same
partitioned region are defined as a group. Furthermore, we adopt a
leave-one-out scheme to measure the importance of each parti-
tioned region, i.e. calculating the training error increase after
neglecting the features corresponding to one partitioned region,
and consider the regions with the largest increase as the impor-
tant ones. We compress the concatenated representation by only
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remaining the dimensions corresponding to the most important
regions and explore the compressed representation to estimate
a multi-region matching kernel for a strong SVM classifier to each
class. We evaluate our algorithm on three challenging object
datasets (i.e. Caltech-101, Caltech-256, and Pascal VOC 2007), and
one scene dataset (i.e. 15-Scenes), showing the effectiveness of our
method in comparison with some related works.

The rest of the paper is organized as follows. Section 2 reviews
the related work of BoF models with spatial information. In
Section 3, we elaborate our proposed method of adaptive spatial
partition learning for image classification. The experimental eva-
luation is given in Section 4, and we conclude in Section 5.

2. Related work

The BoF model, although is simple and directly borrowed from
text retrieval community, has been proven useful and effective
to represent an image for many computer vision tasks, such as
object recognition [24], scene classification [2], image annotation
and retrieval [17]. The standard BoF extracts a set of local patch
descriptors, assigns each descriptor to the closest entry in a
visual codebook which is learned offline by clustering a large
sampling set of descriptors with K-means and then pool them to
an image-level histogram signature. However, the ignorance of
spatial information hinders its final performance. To overcome the
limitation, many subsequent researches to incorporate spatial
information have been done from the following two directions.

One direction is to incorporate the local spatial layout in image,
i.e., the relative positions or pairwise positions of the local features.
Savarese et al. [26] explore the combination of correlograms and
visual words to represent spatially neighboring image regions. In
[16], an efficient feature selection method based on boosting is
proposed to mine high-order spatial features, while Morioka and
Satoh [20] propose to jointly cluster feature space to build a compact
local pairwise codebook capturing correlation between local descrip-
tors and in [21] incorporate the spatial orders of local features. In
[23], a data mining method is proposed to automatically find spatial
configurations of local features occurring frequently on instances of a
given object class.

Since images often have spatial preferences, another direction
is to incorporate global spatial layout property, i.e., the absolute
positions in image, which is also our focus in this paper. Lazebnik
et al. [15] pioneer the direction of exploiting spatial layout
property and propose SPM. In SPM, the image is divided into
uniform grids at different scales (e.g. 1� 1;2� 2;4� 4), and the
features are concatenated over all cells. Yang et al. [31] and Wang

et al. [30] show that incorporating sparse coding or locality-
constrained coding into the SPM model improves the perfor-
mance. More recently, the combinations of SPM with super vector
[33] and fisher vector [22] models are demonstrated effective to
obtain a good representation. Different from SPM, Krapac et al.
[14] propose to encode the spatial layout by Gaussian mixture
model using the Fisher kernel framework. In [3], local features of
an image are first projected to different directions creating a series
of ordered bag-of-features.

Several parameters in SPM model, such as the number of
pyramid levels and the weights of the grid at each level, are
chosen in an ad-hoc manner without any optimization [15]. Thus
the model is not adaptable to different situations and the perfor-
mance is highly dependent on the experiences and datasets. To
address this issue, Harada et al. [11] propose to form the image
feature as a weighted sum of semi-local features over all pyramid
levels and the weights are automatically selected to maximize a
discriminative power. To design better spatial partition, Sharma
and Jurie [28] define a space of grids where each grid is obtained
by a series of recursive axis aligned splits of cells and propose to
learn the spatial partition in a maximum margin formulation.
In this paper, we both consider the weights of different regions
and the spatial partition style. The most related work to ours is
[13], which adopts the idea of over-complete and formulate
the problem in a multi-class fashion with sparse regularization
for feature selection. However different categories actually have
different spatial distribution, thus we adopt the idea of group
sparsity to adaptively learn a class-specific spatial partition style
and then explore a semantically compression and multi-region
matching kernel to classify each category.

3. Adaptive spatial partition learning

In this section, we describe the details of our proposed frame-
work for image categorization, which is shown in Fig. 2.

3.1. Over-complete spatial partition

As shown in Fig. 2, starting with an input image In, we densely
extract local features (e.g. SIFT or HOG) and encode the features by
learned codebook. Instead of spatial pyramid partition, we create
an over-complete spatial partition set to compile the spatial
information, and use the spatial pooling function to concatenate
representations of all the regions.

Spatial pyramid partition plays an important role in many state-
of-the-art image classification systems. They adopt an increasingly

Fig. 1. Discriminative spatial partitions learned by our method, which provide better spatial information than SPM.
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finer uniform grids (e.g. 1� 1;2� 2;4� 4). Obviously, the uniform
spatial partition cannot adapt to different spatial distribution across
image categories. In order to overcome this constraint, we propose to
construct the spatial partitions in a more flexible scheme, involving
as many geometric properties of the local features as possible. We
think an ideal partition should be able to divide the image into some
semantic regions, i.e. object region and background context region.

First, we employ randomly distributed horizontal and vertical
grids to divide the image into rectangular grids (the dotted grids as
shown in Fig. 2). These grids are considered as the candidate grids
to generate a certain kind of spatial partition. Then a type of spatial
partition is created by randomly choosing a subset of the candi-
date grids (the solid grids as shown in Fig. 2). By covering all
the possible combination of the candidate grids, an over-complete
set of spatial partition is established. In this way, we are able to
incorporate various spatial information of images as many as
possible. We use Ri to denote the i-th partitioned region and G
to denote the number of all the partitioned regions.

Note that our method is also feasible by providing more kinds
of spatial partitions, e.g. circle partitions. For simplicity, we only
apply the straight lines to establish the over-complete spatial
partition set in our implementation. Obviously, the spatial parti-
tioned regions created in this way are highly redundant and only a
small subset of the spatial partition is discriminative and proper to
encode the common spatial layout property.

3.2. Discriminative partition learning with structure regularization

By the method described above, we get G spatial partitioned
regions to represent possible spatial distribution. Then we obtain
the vector x representing the image by concatenating the BoF
feature of each spatial partitioned region: x¼ ½xR1 ; xR2 ;…; xRG �,
where xRi

ði¼ 1;2;…;GÞ denotes the BoF feature of the Ri region.
If the size of the visual codebook B¼ ½b1; b2;…; bD� is D, the
dimension of x is D� G. Since both the visual codebook and
spatial partitioned regions are created in an over-complete
scheme, the resulting features are usually very high-dimensional.
It is conventional to train a linear classifier using the high-
dimensional feature x above, but the performance is very weak
because of the high redundancy. Thus we propose to adaptively
learn the discriminative spatial partitions in a discriminative
formulation with group sparse regularization, while the discrimi-
nation of each partition is measured by its sparse parameters.

In this paper, we present our model in the context of linear
binary classifier with a one-versus-others classification fashion
for each class. Given X ¼ fx1; x2;…; xNg the learning of a linear

classifier leads to the following optimization problem:

min
w;b

1
N

∑
N

n ¼ 1
lðwTxnþb; ynÞþλRðwÞ ð1Þ

where vector w and scalar b are the parameters to be estimated, xn
is the feature vector of the n-th sample, ynAf�1;1g is the label
of the n-th sample, lðwTxnþb; ynÞ is a certain non-negative convex
loss, N is the number of training images, R(w) is a regularizer and
λAR is the regularization coefficient. We choose the binomial
negative log likelihood as the loss function:

lðwTxnþb; ynÞ ¼ lnð1þexpð�ynðwTxnþbÞÞÞ ð2Þ
which leads to the logistic regression classifier.

In addition, we expect the classifier to select the most dis-
criminative spatial partitions because of the high redundancy.
Noted that only a few partitioned regions among all are discrimi-
native and helpful for image classification, which inspires us to
perform semantical compression with the group sparsity prior.
Recent analysis and application of the mixed norm regularization
[1,27,4] show that under certain conditions the sparse coefficient
vector w enjoys the group sparsity property, encouraging the
content-based structured feature selection in high-dimensional
feature space. Thus we adopt the idea of structured sparsity [32],
and train the binary linear classifier via the following optimization
problem:

min
w;b

1
N

∑
N

n ¼ 1
lnð1þexpð�ynðwTxnþbÞÞÞþλ‖w‖2;1 ð3Þ

where ‖w‖2;1 denotes l2=l1 norm regularizer, incorporating group
sparsity property . We set the feature groups here as the dimen-
sions corresponding to a certain partitioned region (xRi

), encoura-
ging the model to mine and select discriminative spatial partitions.
The number of the groups is G and the dimension of features in
each group is D.

The formulation of the l2=l1 mixed-norm regularizer is

‖w‖2;1 ¼ ∑
G

i ¼ 1
‖wRi

‖2 ð4Þ

wherewRi
is the i-th group of parameters corresponding to the i-th

spatial region Ri. This motivates dimensions in the same group to
be jointly zero. Thus the optimization procedure tends to select a
much smaller but more discriminative subset within the over-
complete representations. Beyond the regular l1 norm regularizer,
the sparsity is now imposed on spatial region level rather than
merely on feature level.

Although the optimization problem for l2=l1 regularized logistic
regression is convex, the non-smooth penalty function makes the

Fig. 2. Our image classification pipeline. See Section 3 for details.
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optimization highly nontrivial. We adopt the efficient algorithm
proposed in [19,12]. The dual of the proximal problem associated
with the norm can be reformulated as a quadratic min-cost flow
problem, which is able to be efficiently computed in polynomial
time. The algorithm is very suitable for our problem because
of its efficiency and ability to scale up to millions of variables. Also
a well implemented open toolbox called SPAMS (SPArse Modeling
Software)1 based on the algorithm developed by Julien Mairal is
convenient and effective to solve our problem.

3.3. Feature compression

The linear classification trained by Eq. (3) can be directly utilized
to classify a given image. However, this classifier is weak because
of the high redundancy of our representation. Thus we propose
to compress feature dimensions according to the w learned by
Eq. (3), leading to a semantically more compact and discriminative
representation.

The learned parameters w in Eq. (3) can be regarded as impor-
tance weights of dimensions corresponding to each spatial region.
Based on the idea, we adopt a leave-one-out scheme to measure
the importance of each partitioned region. The importance value
of a particular partitioned region is measured as the increase
of the training error with the dimensions corresponding to the
region removed, while the training error of our model over all
training data given w is defined as

Error0 ¼
1
N

∑
N

n ¼ 1
lnð1þexpð�ynðwTxnþbÞÞÞ ð5Þ

where w and b are the solutions of Eq. (3). The error of neglecting
the dimensions corresponding to the j-th partitioned region, i.e.,
setting wRj ¼ 0, is denoted as Errorj. Then, the importance of the
j-th region is calculated by measuring the training error increase
after neglecting the region dimensions as

Sj ¼
Errorj�Error0

Error0
ð6Þ

The larger Sj indicates the neglected dimensions of the j-th region
are more important and discriminative for the category task. We
then perform the feature compression on x by only remaining the
dimensions corresponding to the regions with positive spatial
importance Sj which is common for the particular class. By this
way, the feature compression is performed semantically to remove
redundant dimensions adapting to the particular class.

3.4. Multi-region matching kernel for SVM classification

In traditional SPM, the grids in the same level are equally
treated to get the final kernel. However, the weights of different
spatial regions should be different (usually the object region
should be paid more attention than background context region).
To this end, the values of Sjðj¼ 1;2;…;GÞ are employed to roughly
indicate the importance of different regions and define a multi-
region matching kernel with the weighted sum of the separate
region kernels, prepared to train a SVM classifier:

Kðx̂1; x̂2Þ ¼ ∑
M

m ¼ 1
Sm � Kðx̂1Rm

; x̂2Rm
Þ ð7Þ

where x̂1 and x̂2 are feature vectors of two images after compres-
sion, x̂1Rm

and x̂2Rm
represent the corresponding dimensions of the

m-th region, M is the remaining number of regions and Sm is the
importance weight of the region. The kernel K may be any kernel

function2 and a normalization operation is usually needed. With
the multi-region matching kernel, we turn to train a one-versus-
others classifier for each class to further enhance the classification
performance.

4. Experiments and results

In the experiments, we implement and compare our method
mainly with KSPM [15] (the popular kernel SPM), ScSPM [31] (the
method that uses sparse coding and linear SVM) and some other
works considering discriminative spatial information [28,13].
Although our method can be combined with diverse coding and
pooling algorithms, we apply the sparse coding and max pooling
strategy for fair comparison. We use a single local descriptor type,
the popular SIFT descriptor, by densely extracting local patches of
16�16 pixels computed over a grid with spacing of 8 pixels and
then the local features are encoded with sparse coding. For all
the experiments, we fix the codebook size as 1024. Considering
simplicity and efficiency, we construct our over-complete spatial
regions using three horizontal lines and three vertical lines. We
also randomly generate some additional spatial grids to incorpo-
rate more flexible spatial information. Totally, a set of 100 different
spatial partitioned regions is employed as our over-complete
spatial partition set. The adaptive spatial partition learning model
is then trained to obtain the parameters w for each class. Finally,
we train the SVM classifier by the compressed features with the
multi-region matching kernel. The trade-off parameters to the
group sparsity regularization term and the SVM regularization
term are chosen via 5-fold cross validation on the training data.

We demonstrate the effectiveness of our method on three
diverse object databases, Caltech-101, Caltech-256, Pascal VOC
2007 and one scene database, 15-Scenes. Following the common
benchmarking procedures, we repeat the experimental process by
5 times with different randomly selected training and testing
images to obtain reliable results. The final results are reported by
the mean and standard deviation of the classification rates. The
extensive comparisons and analysis are presented in the following
subsections.

4.1. Results on Caltech-101 dataset

We start our experiments with an in-depth analysis of our
method on the dataset of Caltech-101 [8]. The Caltech-101 dataset
contains 9144 images totally from 102 different categories, includ-
ing 101 object categories and 1 additional background category,
with high shape variability. The number of images per category
varies from 31 to 800. We follow the common experiment setup
for Caltech-101, training on 15 and 30 images per category and
testing on the rest.

The performance comparison results are shown in Table 1. The
ASPL (adaptive spatial partition learning ) in the table denotes the
method that directly use the spatial partition learning model
trained by Eq. (3) as the final classifier and ASPLþSVM denotes
our method described in Section 3.4 of training a stronger SVM
classifier using the compressed feature with multi-region match-
ing kernel. It is indicated that the best result is obtained by using
the final compressed representations with multi-region matching
kernel, which outperforms the traditional method, i.e. ScSPM [31],
by a margin of roughly 4% according to our implementation.
To evaluate the effect of our spatial partition learning model,
we compare our method with the scheme of randomly selecting

1 The toolbox is available at http://spams-devel.gforge.inria.fr/.

2 In experiments, we use χ2 kernel for 15-Scenes dataset, and linear kernel for
Caltech-101, Caltech-256 and Pascal VOC 2007 datasets.
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the same number of spatial regions from the over-complete set
instead of the spatial partition learning process, which is denoted
as RandþSVM in Table 1. It shows that our method outperforms
the randomly selecting scheme, indicating that our method does
help to select more important and discriminative spatial partitions
for image classification. Our method also performs better than
[13], in which they perform feature selection in a multi-class
fashion to learn discriminative spatial partition for the whole
categories. In our method we adaptively learn category-specific
spatial partitions because different categories obviously have
different spatial distributions, and the feature compression and
multi-region matching procedure also improve the performance.
In Fig. 3 , we show some examples of the classes that our method
increase most and some bad examples that our method decrease
the performance. It is shown that our method obviously improve
the classification accuracy under the condition that the objects
have strong spatial prior nature.

In our method, there is one free parameter λ in Eq. (3) needed
to determine when we learn the discriminative spatial partitions,
which controls the sparsity of the solution. The bigger λ is, more
sparse the solution will be, thus in the feature compression
process described in Section 3.3 more spatial partitioned regions
will be removed, leading to more compact final image representa-
tions. Fig. 4 shows the effect of the tradeoff coefficient λ by
investigating the classification accuracy with different values of
λ. The accuracies are bad when the parameter is small or large,
since small λ may cause redundancy of the features, while large λ
may bring about loss of useful information. Thus the best perfor-
mance was achieved with well balanced parameter. Empirically,
we found that keeping the tradeoff term λ to be around 0.5 yields
good results. In the traditional spatial pyramid representation, the
final image representation is in the dimension of 21,504 (the size
of the codebook is 1024 and the spatial partition setup is 1�1,
2�2, 4�4). In our implementation when λ is 1.5 the dimension of
the final feature is 16,384, which is much less than spatial pyramid
representation and performs better in the recognition task. This
indicates that a more compact and discriminative representation

can be obtained by our model, as we better explore the sparse
nature of the features. While the best recognition performance is
achieved with λ set as 0.5, the final dimension of the image
representation is 27,648.

Fig. 5 is an encouraging demonstration to show what we
learned by the spatial partition learning method. We also draw
the importance maps of the spatial region using the accumulated
importance value of the partitioned regions obtained by our
method described in Section 3.3, as shown in Fig. 5(c). It shows
that the learned spatial partition properly capture the structural
information of the classes. For example, the airplanes in the
Caltech-101 dataset tend to locate in the middle of a image and
our learned spatial regions shown in Fig. 5 capture this property
by paying more attention to the middle regions. In the dolphin
category, the objects appear mostly in the middle and top of the
image, thus these regions are more significant to recognize the
dolphin, which is well modeled by our method. It is demonstrated
that the spatial importance we get really provide better spatial
information than traditional method. However, for some classes,
our method has not capture the spatial distribution of the target
well because of the large diversity of the object and the uncon-
straint of the location. Overall, our method provides a more
discriminative class adaptive spatial information than traditional
SPM and some other related works.

4.2. Results on Caltech-256 dataset

The Caltech-256 [10] dataset is an extension of the Caltech-101.
It holds 29,780 images in 256 object categories where the number
of images in each category varies from 31 to 800. This dataset is
much more challenging as it possesses much higher intra-class
variability and higher object location variability compared with

Table 1
Classification rate (%) comparison on Caltech-101.

Algorithms 15 training 30 training

KSPM [15] 56.40 64.670.80
ScSPM [31] 67:070:45 73.270.54
LCCþSPM [30] 65.43 73.44
Jia et al. [13] — 75.370.70

ScSPM 66.3870.30 72.3270.35
ASPL 65.0470.21 70.5270.20
RandþSVM 65.9370.55 71.3970.84
ASPLþSVM 69.5170.30 76.7270.38

Fig. 3. Examples of the Caltech-101 set. Top: the top 3 categories where our method improves most. Bottom: the 3 categories where our method decreases performance. The
numbers in the brackets indicate the classification rate (ScSPM/our method).

Fig. 4. The classification performance comparisons with varying tradeoff coeffi-
cient λ.
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Caltech-101. Following the common experiment setup for Caltech-
256, we tried our algorithm on 15, 30, 45, and 60 training images
per class respectively and tested on the rest.

The performance comparison results are shown in Table 2.
In the more challenging dataset than Caltech-101, our ASPLþSVM

also consistently leads the performance and outperforms the base-
line ScSPM by more than 4 percent for all the cases. In Fig. 6,
we show some examples of the classes that our method increases
most and some bad examples that our method decreases the
performance.

Fig. 5. Demonstrations showing the effectiveness of our method to learn discriminative spatial partition of the Caltech-101 dataset. (a) Image examples for the classes.
(b) The top 3 important regions according to the weights learned in our method. (c) Spatial importance maps obtained by our method for the particular class. The lighter, the
more important the region is.
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4.3. Results on Pascal VOC 2007 dataset

The PASCAL Visual Object Challenge (VOC) datasets are widely
used as testbeds for evaluating algorithms for image understand-
ing tasks and provide a common evaluation platform for both
object classification and detection. This database is considered to
be an extremely challenging one because all the images are daily
photos obtained from Flicker where the size, viewing angle,
illumination, appearances of objects and their poses vary signifi-
cantly, with frequent occlusions. The PASCAL VOC 2007 dataset [7]
consists of 9963 images from 20 classes, which are divided into
“train”, “val” and “test” subsets, i.e. 25% for training, 25% for
validation and 50% for testing. The classification performance is
evaluated using the Average Precision (AP) measure, a standard
metric used by PASCAL challenge. It computes the area under the
Precision/Recall curve, and the higher the score, the better the
performance. We use the train and val sets for training our model
and report the mean average precision for the 20 classes on
the test set as the performance measure, following the standard
protocol of this database. Very high performance has been
reported by using multiple features and combining diverse models
[29]. For efficiency, here we just adopt one single feature, SIFT, just
to evaluate our method.

In Fig. 7, we show our scores for all 20 classes in comparison
with our baselines, ScSPM and ASPL. The performance of our
method for most of the classes and on an average(43.02 vs. 41.17)
is higher than the traditional SPM method. Fig. 8 shows the
improvement of our method for each category. It is shown that
for some classes, such as sheep, aeroplane and car, the perfor-
mance increase is larger due to the well captured spatial nature of
the objects. However, for some classes, such as dining table
and pottedplant, the improvement of our method is limited. This
is mainly on account of the highly diversity of the images in the
database.

4.4. Results on 15-Scenes dataset

We finally experiment with a popular scene classification bench-
mark, 15-Scenes dataset. This dataset includes 15 classes of different
scenes (e.g. kitchen, coast, highway), containing totally 4485 gray-
scale images with the number of each category ranging from 200 to

400. Fig. 9 shows some example images of the 15-Scenes dataset.
Following the common experiment setup of the dataset [15,31], we
take 100 images per class for training and the rest for testing. The
other parameters are transposed from the former experiments.

Table 3 shows the detailed comparison results. It is shown that the
ASPLþSVM method achieves better performance than traditional
KSPM and ScSPM. The evaluation on the 15-Scenes dataset demon-
strates that our method also adapt to the scene categories to improve
the classification accuracy beyond the object recognition. Fig. 10 shows
the confusion table between the 15 scene categories. Confusion occurs

Table 2
Classification rate (%) comparison on Caltech-256.

Algorithms 15 train 30 train 45 train 60 train

KSPM [10] 28.34 34.10 — —

KC [9] — 27.1770.46 — —

ScSPM [31] 27.7370.51 34.0270.35 37.4670.55 40.1470.91

ScSPM 26.8270.73 33.1470.46 36.1070.60 39.0170.53
ASPL 26.0070.40 32.4170.50 34.0370.11 37.8270.15
ASPLþSVM 30.0370.30 37.6570.38 40.0270.25 44.0270.21

Fig. 6. Examples of the Caltech-256 set. Top: the top 3 categories where our method improves most. Bottom: the 3 categories where our method decreases performance. The
numbers in the brackets indicate the classification rate (ScSPM/our method).

Fig. 7. The AP for all the classes of the VOC 2007 database. We compare our
method (ASPLþSVM) with ASPL and traditional SPM.

Fig. 8. The difference in AP for all the classes of the VOC 2007 database between
our method and the traditional ScSPM.
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Fig. 9. Example images for the 15-Scenes dataset.

Table 3
Classification rate (%) comparison on 15-Scenes.

Algorithms Classification rate

KSPM [15] 81.4070.50
ScSPM [31] 80.2870.93
Sharma and Jurie [28] 80.1070.60

ScSPM 79.2070.53
ASPL 77.8570.54
RandþSVM 77.9070.82
ASPLþSVM 82.1970.10

Fig. 10. Confusion table for the 15-Scenes dataset. Average classification rates for individual classes are listed along the diagonal. The entry in the i-th row and j-th column is
the percentage of images from class i that are misidentified as class j.
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between the indoor classes (e.g. bedroom, kitchen, and living room)
and also between some natural classes (e.g. coast and opencountry).

5. Conclusion

In this paper, we address the issue of the discriminative spatial
partition learning and propose a data-driven approach to discover
the most discriminative partitioned regions to the particular
class. Different from traditional SPM applying manually defined
spatial pyramid partitions, the proposed approach constructs a
more flexible spatial partition set and adopt the idea of structured
sparsity to learn discriminative spatial partitions. Then we propose
to measure the importance of the spatial partitioned regions by
the learned sparse parameters and train SVM classifier with a
multi-region matching kernel. Our method outperforms tradi-
tional SPM method on three object datasets (i.e. Caltech-101,
Caltech-256, Pascal VOC 2007), and one scene dataset (i.e.
15-Scenes), and the experiments have shown its effect to adap-
tively capture the spatial information of the images belonging to
different categories.
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