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Deep learning models have gained significant interest as a way of building hierarchical image representation.
However, current models still perform far behind human vision system because of the lack of selective
property, the lack of high-level guidance for learning and the weakness to learn from few examples. To address
these problems, we propose a detection-guided hierarchical learning algorithm for image representation. First,
we train a multi-layer deconvolutional network in an unsupervised bottom-up scheme. During the training
process, we use each raw image as an input, and decompose an image using multiple alternating layers of non-
negative convolutional sparse coding and max-pooling. Inspired from the observation that the filters in top
layer can be selectively activated by different high-level structures of images, i.e., one or partial filters should
correspond to a particular object class, we update the filters in network by minimizing the reconstruction
errors of the corresponding feature maps with respect to certain object detection maps obtained by a set of
pre-trained detectors. With the fine-tuned network, we can extract the features of given images in a purely
unsupervised way with no need of detectors. We evaluate the proposed feature representation on the task of
object recognition, for which an SVM classifier with spatial pyramid matching kernel is used. Experiments on
the datasets of PASCAL VOC 2007, Caltech-101 and Caltech-256 demonstrate that our approach outperforms

some recent hierarchical feature descriptors as well as classical hand-crafted features.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

How to build a suitable image representation is one critical
problem for computer vision tasks. Some manually designed
image descriptors (e.g. Gabor, SIFT and HOG) have precipitated
dramatic success in past decades. Although these hand-crafted
features may benefit from human ingenuity and prior domain
knowledge to some extent, it is task-dependent and difficult to
detect more complex features, including mid and high-level
structures in images.

Over the recent years, a growing amount of researches focus on
deep learning models for hierarchical image representations
[24,20,37]. The deep architecture is motivated by the hierarchical
nature of human vision cortex, and attempts to learn the hier-
archical structures in a data-driven manner. Therefore, it can easily
borrow knowledge from the human cognitive process and be
applied to various vision tasks.

Usually, deep architectures consist of feature detector units arra-
nged in layers. Lower layers detect simple features and feed into
higher layers, which in turn detect more complex features. However,
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two important properties are neglected in most of previous hierar-
chical feature learning schemes. One is the response selectivity of
nodes in each layer of hierarchy. It is suggested from the biological
evidence that the response possibilities of some neurons in the tem-
poral cortex are highly selective for certain object categories like
faces or hands [6] and even specific people [26]. That is, class-specific
neurons exist in the human brain. The other is the lack of high-level
concept as a type of top-down guidance. Expert suggestions and
personal experiences usually have great influence on the human
cognitive process. Thus, how to incorporate the selective property
and certain high-level structure assumptions for feature learning is
essential to enhance the performance of deep architectures. It is also
noted that the recently popular deep convolutional neural network
[21] requires a large number of labeled images to train. However,
people and animals are able to learn from very few examples. We
attempt to train an effective hierarchical model with fewer training
samples by incorporating more high-level guidance.

To address above problems, we propose a detection-guided deco-
nvolutional network for hierarchical feature learning, as shown in
Fig. 1. In particular, we require the top-layer filters that have selective
activations from different object categories and incorporate object
detection maps as a kind of high-level guidance for network learning.
First, we train a multi-layer deconvolutional network in an unsuper-
vised scheme, which can be easily stacked by alternating non-negative


www.sciencedirect.com/science/journal/00313203
www.elsevier.com/locate/pr
http://dx.doi.org/10.1016/j.patcog.2015.02.002
http://dx.doi.org/10.1016/j.patcog.2015.02.002
http://dx.doi.org/10.1016/j.patcog.2015.02.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2015.02.002&domain=pdf
mailto:jliu@nlpr.ia.ac.cn
http://dx.doi.org/10.1016/j.patcog.2015.02.002

2646 J. Liu et al. / Pattern Recognition 48 (2015) 2645-2655

P Reconstruction Operator 7

) 300 15 [~

deconvolution 4
Iy 306

300 » 306

deconvolution

\

Projection Operator 7’

>

Layer 4

deconvolution

20
150 | Uzo

v
3D max pooling Layer 2

[\ )

Lzﬁer 1

Training Images

- |
I I
| I
I I
| 1 |
| I
| I
| I
| I
(

Fig. 1. Deep architecture of our proposed model. We firstly train a deep deconvolutional network in an unsupervised scheme. Then we fine-tune the network with the

guidance of training object maps generated by object detectors.

convolutional sparse coding and max-pooling operations. Each layer
learning is to decompose an input as a linear sum of 2D feature maps
convolving with filters by minimizing the reconstruction error while
encouraging sparsity on feature maps. The non-negativity property is
enforced on the feature maps to obtain more sensible and explainable
features, which is inspired from some biological evidences [17].
Second, we use the detection maps obtained by a set of pre-trained
detectors to guide the learning of the top layer and fine-tune the
networks below. We divide the filters of the top layer into several
groups with each corresponding to a particular object category, and
the cost function for fine-tuning is to minimize the reconstruction
error of each group of feature maps with respect to the correspond-
ing object detection maps. We also use the top-down influence of
the detection information to update the filters in the lower layers.
With the trained network, each layer can capture diverse image
information: low-level edges, mid-level edge junctions, high-level
object parts and complete objects (as discussed in Section 4). Then
we can extract an over-complete image representation with only
raw image pixels as an input and utilize it as the input of SVM
classifier with a spatial pyramid matching kernel to perform the
task of object recognition. Extensive experiments on the benchmark
datasets of PASCAL VOC 2007, Caltech-101 and Caltech-256 demon-
strate the effectiveness of the proposed method compared with
other related works.

The rest of the paper is organized as follows. Section 2 reviews the
related works of hierarchical feature learning models. In Section 3, we
elaborate our proposed architecture, present how to pre-train the
network in an unsupervised scheme and fine-tune with the object
detection guidance. The experimental evaluation is given in Section 4,
and we conclude in Section 5.

2. Related work

Many researches have focused on building a hierarchical repre-
sentation model as an alternative to manually designed feature. One
class of the hierarchical feature extracting framework is a family of
biologically-inspired heuristic models [27,29]. These models are
mainly motivated by the simple-complex cell model of mammal
vision system [19] and constructed by alternating between con-
volutional filtering and max pooling, extracting features without
any training procedure.

Convolutional Neural Network (CNN) is firstly proposed by
LeCun et al. [23], which is trained purely supervised by a back
propagation algorithm. Some recent extension works further imp-
rove the performance of CNN. Hinton et al. [16] proposed “drop-
out” by randomly omitting half of the feature detectors on each
training case to prevent overfitting and Wan et al. [32] generalized

this idea by setting a randomly selected subset of weights within
the network to zero for regularizing large fully-connected layers.
Zeiler and Fergus [35] proposed to replace the conventional
deterministic pooling operations with a stochastic procedure by
randomly picking the activation with each pooling region accord-
ing to a multinomial distribution. Recently, there has been a surge
of interest in CNN as it achieves impressive results in many real
and difficult situations, e.g., image classification [21,36], object
detection [11] and face recognition [31]. This is due to the available
large-scaled tagged training samples and scalable computation
resources such as thousands of CPU cores and GPU. However, CNN
requires large training examples to achieve excellent performance
and may fail with small datasets [1], while human brains have
the ability to learn from very few examples. Our proposed met-
hod is able to train an effective deep model with small datasets
(e.g. PASCAL VOC and Caltech-101).

Another class of deep feature learning algorithms is based on
the encoder—decoder architecture [18]. The input is fed to the
encoder which produces a feature vector and the decoder module
then reconstructs the input from the feature vector with the
reconstruction error measured. It is trained to minimize the ave-
rage reconstruction error with certain constraints for good prop-
erty, e.g. sparsity.

Our proposed model is developed with the deep learning
framework of stacking shallow generative model by greedy layer-
wise unsupervised learning scheme. Deep Belief Networks (DBN)
[15] builds multiple layers of directed sigmoid belief nets with the
top layer as a Restricted Boltzmann Machines (RBM). It is trained
layer by layer to maximize the likelihood of the input. Lee et al.
[24] extended DBN with convolution operation for the purpose of
extracting latent features from raw image pixels. Yu et al. [34]
proposed a hierarchical sparse coding model to learn image repr-
esentations from local patches. The closest models to ours are
those based on convolutional sparse coding. Kavukcuoglu et al.
[20] proposed to extract features through learned convolutional
filter banks and construct a multi-stage convolutional network. In
[38], a deconvolutional network is developed by alternately stack-
ing convolutional sparse coding and max-pooling layers. Different
from [38], we further constrain the network with non-negative
property motivated by the biological evidence [17]. Most of these
models neglect the selective property and trained in an unsuper-
vised scheme without any top-down guidance of high-level info-
rmation, while our model integrates the object detectors as a high-
level guidance to fine-tune the network. Some previous works
have shown that the performance of object recognition can be
obviously improved by incorporating object detection or localiza-
tion [13,30], while our method explores this information to learn
better image representations.
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Fig. 2. Single Deconvolutional Network Layer, consisting of convolutional non-
negative sparse coding and 3D max pooling.

3. The proposed deconvolutional network
3.1. Single layer

We firstly introduce a single deconvolutional network layer,
consisting of two operations: convolutional non-negative sparse
coding (deconvolution) and max-pooling, as depicted in Fig. 2.
Taking an image y of No color channels y;,y,,....Yy, as an input,
the model decomposes each channel as a linear sum of Ny latent
2-D feature maps x} (i=1,2...,Nq) convolving with filters f,-]J(i:
1,2,...,N1,j=1,2,...,Np). To yield a stable solution, the objective
of the deconvolution is to minimize the reconstruction error while
encouraging sparsity on the learned feature maps. Thus the cost
function of the single layer is

) 21 No Ny Lpl , N;
min C1(y):72 1> xlsfi —yel5+ Z Ix!11

c=1 i=1 i=1
st x>0 M

Different from [38], we enforce non-negative sparsity to further
constrain the solutions to be both sparse and non-negative. For
notational brevity, we combine the convolution and summing
operations into a single operation matrix F', convert x} into a
vector x', and denote the reconstruction as y' = F'x.

After the deconvolution, a 3-D max-pooling operation is per-
formed on the feature maps x!, to introduce some local invariance
property and allow the next layer to learn higher level structures at a
larger scale. The max-pooling is 3-D because it occurs both within
each feature map and between adjacent maps. Non-overlapping 3-D
cubes are employed to partition the feature maps with both values
and location switches of the maximum recorded. This operation is
denoted as [h, s]= P(x), where h and s indicate the pooled maps and
location switches respectively. The 3-D max pooling operation is
nonlinear. However, if s is fixed it becomes a linear operation as
h = Pgx, where P plays the role of a binary selection matrix. On the
contrary, a max unpooling operator Us should be defined for reco-
nstruction, which takes the elements of h back into x at the
coordinates recorded in s with the remaining elements set to zero.
Note that this is also a linear operation when s is fixed and denoted
as X = Ush.

3.2. Multiple layers

With the single layer module described above, we can easily
build deep networks by stacking the single layer in a hierarchical
fashion and treating the pooled maps h' of layer [ as an input for
layer [+1, as shown in Fig. 1. The number of feature maps N; in
each layer may vary. For high-level layer we calculate the recon-
struction j/l through the filters and location switches of the current

layer and below. The higher layer is also trained with respect to
the original input image, rather than the input maps of this layer.
In other words, the objective is to keep the reconstruction f/’ close
to the original input image y. Therefore, the cost function of layer [
is formulated as

. /11 ol 2 . [
min Cy) =51 7 =ylI3+ > il

i=1
st. x>0 )

For notational brevity, a reconstruction operator R; is defined,
taking the feature maps x' of layer I backward down to the original
input space with alternative convolution and unpooling opera-
tions: y'=F'U, F?Uy,...F'x! = R'x!. For simplicity of the gradient
computation, a projection operator (R)' is also defined to project
the input of the network forward up to the feature maps of the
layer L (R =(F")'Ps, ,(F=1TPy_,...Ps,(F")T, where (F)T is the
flipped version of the filters F. Note that given the location
switches s, both the reconstruction and projection operators are
linear.

3.3. Inference phase

The efficiency of inference and learning algorithms is crux for a
hierarchical model. In the inference phase, the objective is to find
the optimized feature maps x given an input image y, with the
filters F of all the layers fixed. In this paper, we employ the efficient
ISTA [2] scheme layer by layer, which is an iteration algorithm
including gradient and shrinkage steps.

Gradient step: In ISTA, the gradient of the reconstruction error
term in Eq. (2) with respect to the feature maps x is needed:

vxl = 4RY (R'X —y) 3)

To compute this gradient, we firstly reconstruct the feature maps
to the input space to calculate the reconstruction error, and then
propagate it forward up to the current layer by the projection
operator (R)'. The gradients are actually computed by alternately
perform the convolution and pooling operations layer by layer,
which is similar to the back propagation algorithm. Taking the
gradient Vx!, we update the feature maps x“

Ry N @)

where f; denotes the size of the gradient step.

Shrinkage step: Following the gradient step, a per-element
shrinkage operation is performed to clamp small elements in x'
to zero, increasing its sparsity:

x' =max(|x'| —3,.0) (5)

Note that the non-negative constraint is satisfied by projecting the
solution into the non-negative set.

A single ISTA iteration consists of the two steps above, where
all the operations are amenable to parallelization. Usually several
iterations are needed to obtain a stable and satisfied solution.

3.4. Learning phase

The learning objective is to estimate the parameters of the
networks, i.e., filters of all layers. When training the networks,
both x' and F are unknown in the cost function. Thus we
alternately minimize the cost function C(y) over the feature maps
with filters fixed, and then minimize with respect to filters while
keeping the feature maps fixed. To update the filters, the gradient
of the cost function with respect to filters in current layer is
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needed:
aC _

Vfij= = APy R R% —y)lx! (6)
ofij

where the gradient is a convolution between two terms. The left
term is the reconstruction error propagating up to layer [ — 1, while
the right term is the feature map of layer I. Thus this can be easily
computed for all the filters of the current layer simultaneously. In
the implementation, the linear conjugate gradients (CG) algorithm
is utilized to update the filters as the model is linear in F with the
feature maps and pooling switches fixed.

3.5. Object detection guided fine-tuning

After greedily learning the filters in every layer, we fine-tune
the model with the object detection maps obtained by a set of pre-
trained detectors as top-down guidance. Firstly, we generate a set
of training object maps set prepared for fine-tuning by decom-
posing the training images with the object detectors trained by the
DPM [9] model. Suppose the number of object categories is M, all
the M detectors are applied to obtain the estimated bounding
boxes of the objects within the image. Then we separately use the
object bounding boxes to dig out the objects in the image by
remaining the intensities within the bounding box while setting
the intensities outside to zero, as shown in Fig. 1. Thus M object
maps with only the object regions for the particular classes
remained are obtained for each image. We also add a background
map indicating the rest area of the image without any objects,
since the context information is also important to understand an
image. The object maps set is denoted as O={01,02,...,0p 11},
where 01,0, ...,0y denote the M classes of object maps and oy 1
represents the background map. For a particular image, only a
small subset of O is positive because of the limited number of
objects within the image.

Algorithm 1. Object detection guided fine-tuning.

Input:
Training set Y, Detection maps set O, Number of layers L,
Epochs E, ISTA steps T, Regularization coefficients 4,
Output:
Filters F, Feature maps X, Location switches S
1: Init. filters F by the unsupervised pre-training
2: for epoch =1 :E (Epoch iteration) do
3 for i=1: N (Loop over images) do
4 Inference phase
5: for [=1:L (Loop over layers) do
6 Solve Eq. (2) by T steps of ISTA and obtain x'
7 Pooling operation: [I',s'] = P(x})
8

: end for
9: Solve Eq. (7) by ISTA and update x*
10: Learning phase
11: Compute gradient Vf* by Eq. (8) and update f* by CG
12: for [=L—1:1 (Loop from top to bottom) do
13: Compute gradient Vf’ by Eq. (9) and update f by CG
14: end for
15:  end for
16: end for

In the fine-tuning, to improve the selective property we hope
each top-layer filter only responds to a particular class of object
while keeping silent for all the other categories. In the context of
our model, this means that the reconstruction of a certain feature
map is only close to a particular category of objects within the

original images. We divide the filters of the top layer L into M+1
groups (FL)gm (m=1,2,...,M+1) and let each group correspond to
a particular object category. With the mth group of feature maps
denoted as (xL)gm the corresponding reconstruction is 6,Ln =
R1Us, , (Fh,, (x1), . Thus we define the cost function of the
fine-tuning phase as

/11_ M+1 L Np
min C(0) =2 10, —0omli53+ Y 1Xf11
X 2= i=1
st xb=0 7

This is to minimize the sum of errors between the reconstruction
of each feature map group 6fn and the corresponding object maps
onm. In this way, we lead each filter in the top layer only focusing on
a particular class of object in the image. Since the cost function is
in the same form as Eq. (2), we also adopt ISTA and CG algorithms
to solve it.

Beyond updating the top-layer filters guided by the object
detection maps, we fine-tune all the lower layers through the top-
down propagated influence of this information, to further enhance
the selectivity and discrimination property of the whole network.
It can be performed by the CG algorithm by utilizing the gradient
of the cost function with respect to each layer's filters:

Vffj=MlPs,  (R* (@0, —om)lixt, jegn ®)
! M+1 L
Vfij=M > P (R (65, —0m);
m=1
f{UgFl (FHy (&b 1, 1<I<L 9)

Eq. (8) is the gradient with respect to the filters in the top layer,
which is similar to Eq. (6) except that only the reconstruction error
of the mth group of feature maps is computed. Eq. (9) is the
gradient with respect to the filters of the lower layer I, where the
left term is the sum of errors with respect to each object map
propagated to layer [—-1 and the right term is the top down
reconstruction to the current layer . This indicates the property
that the filters are affected by both the bottom-up generative and
top-down high-level information. While the pre-training of the
networks is performed from bottom layer to top, the fine-tuning is
opposite from top to bottom. The overall training algorithm of the
fine-tuning is summarized in Algorithm 1.

3.6. Object recognition pipeline

With the fine-tuned network, we extract the features of a given
image with no need of detectors by decomposing the input image
into multiple layers of feature maps. To perform object recogni-
tion, our model must be combined with a supervised classifier.
Here we turn to the Spatial Pyramid Matching (SPM) [22] model,
which is demonstrated to be very effective in image classification
task [33]. In this section, we will describe the pipeline to combine
our feature learning model with the SPM classifier.

Given a new image y as an input, we build spatial pyramid
representation for each layer by the obtained feature maps and
switch configurations. For the 1st layer, we directly use the feature
maps x}(i: 1,2,...,Nq) as activations of this layer to extract the
SIFT-like feature representation. Similar to dense SIFT, each feature
map in this layer is densely split into overlapping 16 x 16 patches.
Then the absolute value of activations in each patch is pooled in
4 x 4 regions and the pooled values of all the adjacent feature
maps are concatenated leading to a 16 x N; dimensional descrip-
tor. Replacing SIFT by this descriptor, we can compute a spatial
pyramid representation for the first layer. With respect to higher
layers, although the filters are shared between images, the location
switches are not. Thus the feature maps of two images are not
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directly comparable as they use different bases R'. In the top layer
of our model, we lead the filters of group m responding more
strongly to the mth object category. To take advantage of this
discriminative property, we propose a novel approach to apply the
learned features. We only remain the largest activations within
each feature map in layer | and separately reconstruct each one
down to the input space. Then N, different reconstructed images
(¥1.92....Yn,) are obtained with each one containing certain
image parts. After that, we respectively use the corresponding
feature maps in the 1st layer of these N, reconstructions
("1 &"%, . %" in the same way that we adopt to treat the
actual 1st layer feature maps, leading to N; spatial pyramid
representation. By averaging the N, representation, we get the
representation corresponding to layer [. The obtained spatial
pyramid representation in each layer may be concatenated as
the final feature to train SVM classifiers to further improve the
performance.

4. Experiments

Our experiments are conducted by the Deconvolutional Networks
toolbox developed by Zeiler [38], the GPU library GPUmat' and the
C+ + GPU convolutional library.” The entire model is trained on a 24-
core CPU and a Nvidia Tesla M2075 GPU for parallelization and fast
computing. We evaluate our model on three image benchmarks:
PASCAL VOC 2007, Caltech-101 and Caltech-256.

We implement a 4-layer model with sizes of filters set to 7 x 7 for
all the layers. The number of feature maps in each layer is 15,50,
100,150 and the pooling sizes are 3 x3x3,3x3x23x3x23x
3 x 2 respectively, as elaborated in Fig. 1. Before inputting into
the model, each image is converted to gray-scale and resized to
300 x 300 (zeros padding to preserve the aspect ratio). A local
subtraction with Gaussian filter is also performed and the intensities
of the image are finally normalized to [0, 1]. In the fine-tuning phase,
we directly employ the ground truth of the object bounding boxes to
create the training object maps set since the performance of the
state-of-the-art object detector is still unsatisfied. When performing
recognition combined with the SPM classifier, we densely extract
descriptors from the feature maps over a grid with 3 pixels spacing in
multiple scales and the size of codebook is fixed as 2000. The spatial
regions are obtained by dividing the feature maps into non-overl-
apping regions with 1 x 1,2 x 2,3 x 1 grids on PASCAL VOC 2007
and 1x 1,2 x 2,4 x 4 on Caltech-101 and Caltech-256. 3 kernels
are adopted to train SVM classifiers.

In the following subsections, we firstly in-depth analyze our model
on PASCAL VOC 2007 by visualizing the learned filters and feature
maps. Then we report the recognition performance on the three
datasets. We mainly compare our method with some famous hand-
designed descriptors (e.g. HOG [5], SIFT and its color-variant Oppo-
nent-SIFT [28], Object-Bank [25]), and some hierarchical feature
learning models (e.g. CDBN [24], ConvSC [20], HSC [34], DN [38]).

4.1. Results on PASCAL VOC 2007

The PASCAL VOC 2007 dataset [7] is widely used as test bed for
evaluating algorithms for image understanding tasks. This data-
base is considered to be an extremely challenging one because all
the images are natural photos obtained from Flicker where the
size, viewing angle, illumination, appearances of objects and their
poses vary significantly, with frequent occlusions. The dataset
consists of 9963 images from 20 classes, where 5011 images are

! http://http://sourceforge.net/projects/gpumat/
2 http://code.google.com/p/cuda-convnet/

used for training and validation, and 4952 images for testing. The
classification performance is evaluated by the Average Precision
(AP) measure, a standard metric used by PASCAL challenge. When
performing fine-tuning, we divide the first 120 feature maps of the
4th layer into 20 groups, i.e., every 6 adjacent feature maps
corresponding to a particular category and the rest 30 represent-
ing the background context. Our model is trained by the training
and validation images and evaluated on the testing images. It takes
about 6 h to entirely train a 4-layer model.

4.1.1. Model visualization

Fig. 3 shows the learned filters in all the four layers before and
after fine-tuning. In the first layer, it is convenient to show what we
have learned by directly visualize the filter matrixes. However, for
higher layers it is meaningless by directly visualizing the filter
matrixes, since the higher layer works by assembling the filters from
the current layer to the bottom. To show the high-level filters, we
respectively take each feature map in current layer and then pick the
single largest activation over the entire training set to reconstruct it
down to the input space. In other words, we show the filters by
evaluating what kind of structures mostly activate them. In layer 1, we
see a range of edge structures of different orientations and scales,
which is similar to edge-based SIFT descriptors. Thus the recognition
performance of layer 1 is very similar to SIFT. In layer 2, the filters
capture some mid-level image structures, including some edge junc-
tions, curves, parallel lines and other basic geometric elements, while
the filters in layer 3 also represent some mid-level features with more
complex structures. Some filters in layer 3 already capture some high-
level object parts, such as the plane-like and bird-like filters. In layer 4,
our model is able to capture very high-level image structures, i.e., key
object parts and fairly complete objects. The comparison of filters
before and after fine-tuning demonstrates the effectiveness of our
fine-tuning scheme, as obviously better filters are obtained after fine-
tuning especially on the 3rd and 4th layer with improved selective and
discriminative property and different filters in layer 4 respond to
particular classes of objects (e.g. aeroplane, bicycle, bird, and boat). We
think the unsupervised learning is effective at extracting low-level
information in the lower layers, while high-level information guided
fine-tuning is significant to integrate the low-level features and obtain
high-level representations.

With the trained model, multiple layers of feature maps are
inferred given a new image as an input. In Fig. 4, we visualize some
examples of the obtained feature maps in layer 4 by picking and
reconstructing the largest 3 activations respectively. It is shown
that different filters focus on different classes of objects in the
image. For example, the left image in the 4th row contains two
categories of objects, i.e. person and motorbike, which respectively
activate different filters. It is also shown that our model decom-
poses the left image in the 3rd row into bus map and person map.
These evidences demonstrate that the learned filters have seman-
tic meanings and selectively respond to different categories of
objects in the input image. In the last two rows of Fig. 4, we display
some hard examples that our model does not handle well. This is
mainly because of the extremely large variability of PASCAL VOC
datasets. For example, in the left image of the last row, the person
is in such a small upper left corner of the image that our model
fails to represent. For the right image in the last row, the feature
maps are not able to capture the sofa and tv well, because only a
small part of the sofa exists in the bottom and the tv is heavily
occluded by the dog.

4.1.2. Object recognition

The recognition performances of our model on PASCAL VOC 2007
are shown in Table 1. Our best result is achieved by combining the
features in all the 4 layers denoted as ‘Our(I1+[2+I3+14) and leads
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Fig. 3. The visualization of filters learned in each layer of our model. (1) Filters of all the 4 layers before fine-tuning. (2) Filters of all the 4 layers after fine-tuning.

2) Corresponding feature maps in layer 4 2) Corresponding feature maps in layer 4
1) Input 1st Max 2nd Max 3rd Max 1) Input 1st Max 2nd Max 3rd Max

Fig. 4. Visualization of the feature maps in layer 4 when inputting a raw image. (1) Examples of input images. (2) Corresponding largest 3 feature maps in layer 4, visualized
by reconstructing the feature maps in the 4th layer into the input space.



Table 1

Recognition performance (AP in %) comparison on VOC 2007. (The table is divided into two parts due to the limitation of space.)

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table
HOG 69.8 40.2 272 51.6 19.6 49.2 67.1 44.7 475 29.0 34.5
SIFT [4] 68.7 57.0 39.9 64.6 22.0 58.8 73.9 53.8 52.4 38.6 49.2
OpponentSIFT [28] 69.6 66.9 40.3 62.8 174 523 69.3 39.8 479 35.7 451
Object bank [25] 68.7 53.4 34.6 61.8 19.8 49.9 75.0 421 48.7 28.7 50.2
DN [38] 69.0 40.8 422 62.3 25.3 50.1 64.1 50.8 50.9 337 40.8
Our (1) 70.1 521 459 66.6 32.8 554 68.9 57.6 54.8 42.7 439
Our (12 69.5 53.2 475 66.2 324 56.3 67.0 56.7 54.8 45.9 43.8
Our (13) 711 543 48.2 67.8 34.7 56.5 69.3 57.7 56.7 47.7 449
Our (14) 75.0 56.3 50.0 68.3 375 57.2 71.6 59.6 57.8 49.0 45.8
our (I1+14) 75.5 57.7 53.9 70.1 423 59.7 734 64.0 58.9 53.2 49.6
our (I1+2+3+14) 76.5 58.5 55.0 71.5 43.2 60.1 73.9 64.8 59.5 54.6 50.3
Our(nononnegativity) 74.9 56.0 53.7 68.8 413 58.9 71.9 61.7 57.0 53.1 47.8
Method Dog Horse Motor Person Plant Sheep Sofa Train Tv Mean
HOG 309 69.1 43.7 75.2 18.3 24.8 327 65.4 41.0 441
SIFT [4] 36.9 75.6 61.6 81.6 20.5 401 50.9 73.4 49.2 534
OpponentSIFT [28] 333 76.0 59.2 78.2 19.8 41.7 41.5 704 42.7 49.9
Object bank [25] 318 714 531 79.6 15.6 29.0 44.3 67.3 49.0 48.7
DN [38] 36.3 771 49.6 79.2 20.0 20.7 47.7 66.7 414 48.4
Our (1) 372 78.7 55.9 80.8 20.9 27.8 51.5 72.8 425 529
Our (12) 376 774 53.9 81.9 21.6 30.0 51.3 72.5 432 53.1
Our (13) 38.8 79.9 56.9 83.3 23.6 28.7 53.5 72.7 45.6 54.6
Our (14) 40.5 80.8 57.4 84.8 25.2 299 55.3 74.5 46.0 56.1
our (I1+14) 42.0 83.1 61.8 85.5 259 321 58.2 77.6 47.2 58.6
our (1+2+3+14) 42.6 83.6 62.3 86.4 27.3 325 59.5 78.7 48.5 59.5
Our (nononnegativity) 416 80.1 60.1 84.2 26.1 314 57.1 75.2 459 57.3
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the performance compared with the baselines. DN [38] is the most
related model, which trains a 4-layer model in an unsupervised
scheme. The main differences are that we further constrain the
learned feature with non-negativity and fine-tune the model with
object detectors, leading to the obvious improvement of more than
10%. As ‘Our(no nonnegativity) denotes the model without non-
negative constraint, it is indicated that the non-negative constraints
bring about 2% of improvement and the detection-guided fine-tuning

Table 2
Recognition performance (AP in %) comparison of different object maps setups on
VOC 2007.

Class DN [38] Our(1(pPM) Our(4)DPM) Our(1) Our¢4) DPM detection AP

Aero  69.0 69.1 70.3 70.1 75.0 62.2
Bike  40.8 51.6 54.1 521 563 731
Bird 422 439 433 459 500 569
Boat  62.3 64.6 62.3 66.6 683 556
Bottle 25.3 313 31.2 328 375 523
Bus 50.1 55.0 56.8 554 572 743
Car 64.1 68.2 67.7 689 716 595
Cat 50.8 57.2 56.4 576 596 713
Chair 509 52.3 50.3 548 57.8 492
Cow 337 423 42.7 427 490 693
Table 40.8 43.5 452 439 458 84.0
Dog 36.3 36.9 375 372 405 68.7
Horse 77.1 781 78.6 78.7 808 74.2
Motor 49.6 549 56.2 559 574 737
Person 79.2 78.5 79.4 80.8 848 65.6
Plant  20.0 183 20.1 209 252 491
Sheep 20.7 26.0 251 278 299 516
Sofa 47.7 51.1 54.6 51,5 553 792
Train  66.7 72.3 73.4 728 745 748
Tv 41.4 41.8 424 425 460 635
Mean 484 51.8 524 529 561 65.4

contributes more. In comparison with the famous hand-signed
features (ie. HOG, SIFT and its color-variant Opponent-SIFT) with
the same extracting setup and SPM classifier, our learned features
perform much better in most categories and the mean AP. The
Object-Bank representations are high-level image representations
extracted with a scale-invariant response map of pre-trained generic
object detectors. It is shown that our best results also outperform
Object-Bank, even though our method dose not need any object
detectors when executing object recognition with the trained model.

In Table 2, we also compare our results with the performance of
employing the pre-trained detector provided by [9] to create the
training object maps for fine-tuning (denoted as ‘Our(/1)(DPM)’ and
‘Our(l4)(DPMY) in the table). The average precision of the DPM-
based detector on the training and validation subset is 65.4%. In this
way, the mean recognition AP of the 1st layer features is 51.8%,
while the mean AP of the 4th layer features is 52.4%. Compared to
our best results obtained by directly employing the labeled object
bounding boxes, the performance of the 4th layer is decreased by
about 4 percentages in average, but is still higher than the baseline
of ‘DN [38]. This demonstrates the effectiveness of the detection
guidance for feature learning, even if the detectors are not strong
enough. Obviously, the better the detectors the higher enhance-
ment is achieved for our model. For some categories that the det-
ector performs well, like table (84.0% detection AP), the perfor-
mance of the recognition accuracy is comparable with the scheme
of applying the ground truth of the location (45.2% vs. 45.8%).
However, for the categories with weak detection performance, like
car (59.5% detection AP), the decrease of the recognition accuracy is
more obvious (67.7% vs. 71.6%). Thus it is believed that with stronger
detectors the performance may be similar to the way of directly
applying the precise location information. Note that the perfor-
mances of the 1st layer features are similar, as the influence of the
fine-tuning phase on the low-level layer is limited.

Fig. 5. The visualization of filters from layer 1 to layer 4 learned on Caltech-101.
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4.2. Results on Caltech-101

The Caltech-101 dataset [8] contains 9144 images belonging to
101 object categories, with high shape variability. The number of
images per category varies from 31 to 800. In the fine-tuning
process, we let 101 feature maps of the 4th layer correspond to the
101 classes respectively and the remaining 49 correspond to the
background. We follow the common experiment setup, training on
30 images per category and testing on the rest.

In Fig. 5, we show the filters leaned on the Calteh-101 dataset.
The 4 layers of filters on this dataset are also able to capture image
information in a hierarchical form, i.e., low-level edges, mid-level

Table 3
Classification rate (%) comparison on Caltech-101.

Algorithms Classification
rate
SIFT [22] 64.6+0.8
Macrofeature [3] 709+ 1.0
CDBN [24] 65.4+0.5
ConvSC [20] 65.7+0.7
HSC [34] 74.0
DN [38] 71.0+ 1.0
Our VOC model 721+03
Our (I1) 68.4+03
Our (14) 75.7+0.2
Our (I1+14) 76.6 + 0.4
Our (I1+12+13+14) 77.3+0.2
CNN (no extra data) [36] 46.5+ 1.7
CNN (with ImageNet) [36] 86.5+0.5
CNN-SPP (with ImageNet) 914 +0.7
[14]
Table 4

Classification rate (%) comparison on Caltech-256.

Algorithms Classification rate
SIFT [33] 29.5+05
KCB [10] 272405
ScSPM [33] 34.0+04
DN [38] 332+08
Our (1) 343 +0.5
Our (I5) 381+0.2
Our (11+12+13+14+15) 40.3 +0.3
CNN (no extra data) [36] 225+0.7
CNN (with ImageNet) [36] 70.6 +0.2

cannon (96.0%)

) duck(6.5%)

leopards(96.0%)

geometric elements, high-level object parts and complete objects.
Different filters of layer 4 focus on particular object classes of
Caltech-101 and these filters seem fairly clear and complete as
Caltech-101 is a easier dataset with less intro-class and object
occlusion variability. It is also noted that the filters of layer 1 and
layer 2 are quite similar to those on PASCAL VOC, indicating that
our model captures some general image information especially in
the low and mid levels.

Table 3 shows the recognition performances comparison in this
dataset. Our best result is also obtained by combining the representa-
tions of the 4 layers, with an improvement of more than 6% compared
with DN. Macrofeature [3] is a kind of hand-designed mid-level des-
criptors based on SIFT and behaves worse than our learned hier-
archial features. Our model also beats some recently developed hie-
rarchial models (ie. CDBN [24], ConvSC [20] and HSC [34]) as these
models lack high-level information to guide the model learning.
We also evaluate the generalization of our model by employing the
network trained on VOC 2007 to evaluate on Caltech-101, denoted as
‘Our VOC model’ in the table. Even though the performance in this
case is less than our best result, it outperforms DN [38] and most
published results. This has indicated that the model learned by the
challenging VOC images captures some universal image structures and
can generalize to entirely new categories. More stat-of-the-art results
on this dataset are achieved by the framework of Convolutional Neural
Network [36,14], as they employ an auxiliary large-scaled ImageNet
dataset to pre-train a very large network. It is noted that CNN [36]
performs weak without extra large numbers of training samples, while
our proposed model can learn effective features from few examples.

4.3. Results on Caltech-256

The Caltech-256 dataset [12] is an extension of Caltech-101,
including 29,780 images in 256 object categories where the number
of images in each class ranges from 31 to 800. This dataset is very
much challenging as it possesses highly intra-class variability and
object location variability. Because there are 256 object categories, we
train a 5-layer model on this dataset and set the number of filters in
the 5th layer to 280, then we let 256 feature maps of the top layer
respond to the 256 classes with the rest corresponding to the back-
ground. The other parameter setups are transposed from the former
experiments. We train on 30 images per class and test on the rest. As
shown in Table 4, our model consistently outperforms the related
methods on this challenging dataset and a gain of 10.8% is achieved
over SIFT descriptors. It is noted that our model also beats ScSPM
[33], which performs more complex sparse coding than the hard

cake(8.0%)

Fig. 6. Examples images of classes with highest and lowest classification accuracy from the Calteche-256 dataset. The top two rows are classes with the highest accuracy and

the bottom one displays classes with poor accuracy.
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assignment method in our experiments, further demonstrating the
effectiveness of the features learned by our model. Zeiler and Fergus
[36] achieve the accuracy of 70.6% on this dataset, since they pre-train
a CNN model with large-scaled extra ImageNet dataset, while our
model is able to learn good features with much less training samples.
In Fig. 6, we show some example images from classes with the
highest and lowest classification accuracies. Our model performs
very well on categories with little clutter (e.g. faces and car side),
but fails in some categories like drinking-straw because of the
large intra-class variation and highly diversity as seen in Fig. 6.

5. Conclusion

In this paper, we propose a detection-guided deconvolutional
network for hierarchically learning image features and explore it for
object recognition. It is shown that our model is effective to learn
latent image structures from low-level edges to mid-level geometric
elements and high-level complex objects. The selective and discrimi-
native properties of the network are enhanced by our non-negative
constraint and detection-guided fine-tuning scheme. Extensive experi-
ments on three famous image benchmark databases (i.e. PASCAL VOC
2007, Caltech-101 and Caltech-256) demonstrate that the recognition
performances of our model outperform the classical hand-designed
features and related hierarchical models. It is also shown that the
model trained on PASCALVOC 2007 can adapt to the new categories in
Caltech-101, indicating the well generality of the proposed model.
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