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Abstract. The bag of feature model is one of the most successful model
to represent an image for classification task. However, the discrimination
loss in the local appearance coding and the lack of spatial information
hinder its performance. To address these problems, we propose a deep
appearance and spatial coding model to build more optimal image rep-
resentation for the classification task. The proposed model is a hierarchi-
cal architecture consisting of three operations: appearance coding, max-
pooling and spatial coding. Firstly, with an image as input, we extract a
set of local descriptors and adopt the appearance coding to encode them
into high-dimensional robust vectors. Then max-pooling is performed
within the over spatial partitioned grids to incorporate spatial informa-
tion. After that, spatial coding is carried out to increasingly integrate the
region vectors to a global image signature. Finally, the resulting image
representation are employed to train a one-versus-others SVM classifier.
In the learning of the proposed model, we layerwisely pre-train the net-
work and then perform supervised fine-tuning with image labels. The
experiments on three image benchmark datasets(i.e. 15-Scenes, PAS-
CAL VOC 2007 and Caltech-256) demonstrate the effectiveness of our
proposed model.

1 Introduction

The task of recognizing semantic category of an image remains one of the most
important but challenging problems in computer vision and machine intelligence.
The crux of the problem is how to describe an image properly for the classifi-
cation task. In recent years, Bag-of-Feature (BoF)[1] remains one of the most
successful method. It extracts a set of local patch descriptors(e.g. SIFT[2] and
HOG[3]), encode them into high dimensional vectors and pool to obtain an
image-level signature. The standard BoF assigns each local descriptor to the
closest entry in a visual codebook which is learned offline by clustering a large
sampling set of descriptors with K-means. However, two major problems hinder
the performance of this model, i.e., the shortcomings brought by the appearance
coding scheme and the lack of spatial information.

Given the simplicity, hard-assignment appearance coding scheme in BoF
comes with the problem of quantization error. There have been several exten-
sions to reduce this information loss by adopting better coding techniques as
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alternative. VanGemert et al.[4] proposed the concept of visual ambiguity and
soft assign each descriptor into multiple visual words in the codebook. Yang et
al.[5] adopt the sparse coding algorithm, which demonstrates effective in fea-
ture representation and discriminative task. Wang et al.[6] proposed to relax
the restrictive constraint by locally-constrained linearity regularization. How-
ever, these methods are all performed in a purely unsupervised way without any
high-level guidance, leading to the absence of discriminative information. Thus
the resulting representation is not optimal for the classification, and a better
coding model may explore both generative and discriminative properties.

Another inherent drawback is the lack of spatial layout information as the
BoF model describes an image as an orderless collection of local features. To
overcome this problem, one popular extension, known as Spatial Pyramid Match-
ing(SPM)[7], has been shown effective by partitioning each image into a fixed
sequence of increasingly finer grids and concatenating the BoF features in each
grids to form a global image representation. It is obvious that the simple con-
catenation of the region features are not optimal to handle complex spatial
distribution, and the spatial coding should also take advantage of both genera-
tive and discriminative characteristics, since different image classes usually have
their own particular spatial distributions of local features.
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Fig. 1. The proposed deep appearance and spatial coding model. See Section 3 for
details.(Better view in the color version)

To address above issues, this paper proposes a deep appearance and spatial
coding model to build representative and discriminative image representation.
As shown in Fig.1, the proposed model is a hierarchical architecture, consist-
ing of three operations: appearance coding, over spatial max-pooling and spatial
coding. The base module is Cardinality Restricted Boltzmann Machine[8], which
is an extension to Restricted Boltzmann Machine with the attractive properties
of sparse coding by introducing competition among its hidden units. With an
image as input, our model firstly extracts local patch descriptors and employ
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the appearance coding to encode them into high-dimensional codes. To incorpo-
rate more optimal spatial layout information, we adopt the idea of over spatial
max-pooling. We create various spatial partitions covering very flexible spatial
distributions and perform max-pooling within each grid. The resulting features
of each partitioned region are then concatenated as input to the next spatial cod-
ing module. At last, the layers of spatial coding are explored in a hierarchical
structure to increasingly integrate the region vectors to a global image signature.
To learn the deep model, we layerwisely pre-train it in an unsupervised way and
then fine-tune the parameters with image labels to enhance the discrimination.
In this way, our model better explores the generative and discriminative prop-
erties, making the obtained feature more optimal to represent the image and
adapt to classification task. The output image representations are employed to
train a one-versus-others SVM classifier to perform classification. We evaluate
our model on three widely used benchmarks (i.e. 15-Scenes, PASCAL VOC 2007
and Caltech-256), and the extensive experiments demonstrate the effectiveness
of our method in comparison with baselines and related works.

2 Related Work

The Bag-of-Feature(BoF) model[9] is directly borrowed from text retrieval com-
munity. In spite of the simplicity, it has been proven very effective to represent
an image for large number of vision tasks. The standard BoF extracts a set of lo-
cal descriptors, and assigns each to the closest entry in a visual codebook, which
is learned offline by clustering a large sampling set of descriptors with K-means.
Then all these resulting local codes are pooled into an image-level histogram
representation. Over the past few years, many efforts have been done to improve
the performance of the BoF model.

To overcome the information loss in the codebook learning and feature cod-
ing process, some researchers attempted to learn discriminative visual codebooks
for image classification[10][11]. Co-occurrence information of visual words was
also considered in a generative framework [12]. In [13], the idea of visual word
ambiguity is introduced to soft assign each local descriptor to multiple visual
words in the learned codebook. As sparse coding is proven effective in feature
representation and discriminative tasks, Yang et al.[5] utilized it to encode the
local features into high-dimensional sparse codes. This method can automati-
cally learn the optimal codebook and search for the optimal coding weights for
each local feature. Inspired by this, Wang et al.[6] proposed to use locality to
constrain the sparse coding process which may be computed faster and yield
better performance. Jiang et al.[14] proposed to improve the discriminatingly of
dictionary via a label consistent regularization. Some other works[15][16] also
tried to jointly learn the optimal codebooks and appearance codes. However,
how to better explore the generative and discriminative properties of the data
is still a difficult problem. In this paper, a combination of both unsupervised
feature learning[17][18] and supervised learning is adopted.
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As BoF represents an image as an orderless histograms of visual words, many
subsequent researches have been done to incorporate spatial information. One
direction is to incorporate the local spatial layout in image, i.e. the relative po-
sitions or pairwise positions of local features. Savarese et al.[19] explored the
combination of correlograms and visual words to represent spatially neighbor-
ing image regions. [20] proposed an efficient feature selection method based on
boosting to mine high-order spatial features, while [21] proposed to jointly cluster
feature space to build a compact local pairwise codebook capturing correlation
between local descriptors and the spatial orders of local features were further
considered in [22]. Since images often have spatial preferences, another direc-
tion is to incorporate global spatial layout property, i.e., the absolute positions
in image. Lazebnik et al.[7] pioneered this direction and proposed the Spatial
Pyramid Matching (SPM) model. In SPM, the image is divided into uniform
grids at different scales (e.g. 1 × 1, 2 × 2, 4 × 4), and the features are concate-
nated over all cells. This model is successful because it is demonstrated that the
combinations of SPM with sparse coding[5], locality-constrained coding[6] and
recently developed super vector[23] or fisher vector[24] models are very effective
and achieved the state-of-the-art performance. However, the spatial partitions
in SPM are too simple to adapt to complex nature situations and are chosen in
an ad-hoc manner without any optimization[7]. To solve this problem, Harada
et al.[25] proposed to form the image feature as a weighted sum of semi-local
features over all pyramid levels and the weights are automatically selected to
maximize a discriminative power. To design better spatial partition, Sharma et
al.[26] defined a space of grids where each grid is obtained by a series of recursive
axis aligned splits of cells and propose to learn the spatial partition in a maximus
margin formulation. [27] formulated the problem in a multi-class fashion with
structured sparse regularizer for feature selection, while [28] proposed to learn
category specific spatial partition in a one-versus-others classification scheme. In
this paper, we explore the idea of over spatial partition and encode it into a deep
representation. The most important difference of our model with the previous
works is that we take advantage of both traditional BoF models and recently
developed deep feature learning framework.

The feature learning models are usually build in a hierarchical framework
by stacking shallow generative models with greedy layerwise scheme. One class
of feature learning algorithms is based on the encoder-decoder architecture(e.g.
Auto-encoder)[29]. The input is fed to the encoder which produces a feature vec-
tor and the decoder module then reconstructs the input from the feature vector
with the reconstruction error measured. Deep Belief Networks(DBN)[30] build
multiple layers of directed sigmoid belief nets with the top layer as a Restricted
Boltzmann Machines. Lee et al.[31] extended DBN with convolution operation
for the purpose of extracting latent features from raw image pixels. Yu et al.[32]
proposed a hierarchical sparse coding model to learn image representations from
local patches. Different from these models, we apply a stacked Cardinality Re-
stricted Boltzmann Machine[8], which is an extension to Restricted Boltzmann
Machine with the attractive properties of sparse coding by introducing competi-
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tion among its hidden units. . The most important difference of our model with
the previous works is that we take advantage of both traditional BoF models
and recently developed deep feature learning framework.

3 The Proposed Model

In this section, we describe the details of our proposed model for image rep-
resentation and classification. As illustrated in Fig.1, it is a hierarchial archi-
tecture, consisting of 3 operations: appearance coding, over spatial max-pooling
and spatial coding. The base module of the deep model is Cardinality Restricted
Boltzmann Machine(CaRBM).

3.1 Appearance Coding

Starting with an input image I, we densely extract a set of local patch descriptors
(e.g. SIFT and HOG) and take each descriptor as input to the appearance coding
layer. The appearance coding is a deep CaRBM module, encoding the input
features into high-dimensional sparse and discriminative codes.

A Restricted Boltzmann Machine(RBM)[33] is a type of bi-partite undirected
graphical model that is capable of learning a dictionary of patterns from unla-
beled datas. It has a two-layer structure, defining a joint probability distribution
over a hidden layer h ∈ {0, 1}Nh and a visible layer v ∈ {0, 1}Nv :

P (v, h) =
1

Z
exp(v>Wh+ v>bv + h>bh) (1)

where Z is the partition function, W ∈ RNv×Nh represents the undirected
weights and bv ∈ RNv , bh ∈ RNh are the bias terms. As RBM is a popular den-
sity model for extracting features, a desirable property, i.e. sparsity, is neglected
when applying it to discriminative task. CaRBM is an extension to RBM with
the attractive properties of sparse coding by introducing competition among its
hidden units. It combines RBM with cardinality potential, which is a class of
highly structured global interactions by assigning preferences to counts over sub-
sets of binary variables. The probability of the joint configuration in CaRBM is
defined as follows:

P (v, h) =
1

Z
exp(v>Wh+ v>bv + h>bh) · ψk(

Nh∑
j=1

hj) (2)

where ψk is a potential given by ψk(c) = 1 if c ≤ k and 0 otherwise. This
constrains that the conditional distribution P (h|v) assigns a non-zero probability
mass to a vector h only if |h| ≤ k. In other words, a data vector v can be explained
by at most k hidden units.

By letting the visible layer v correspond to dimensions of the input local
descriptor, the CaRBM is able to encode it into a high-dimensional codes. Dif-
ferent from the standard visual coding, we directly map the descriptors into a
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high-dimensional space by the undirected weights matrix. Thus in the appear-
ance layer, the dimension of the visible units is denoted as Nv = X(128 for
SIFT) and the number of hidden units is denoted as Nh = D which is usually
much larger than X. In the appearance coding of our model, we build a two
layer model by stacking the CaRBM, where the output of the first CaRBM is
regarded as the input to the next layer. These deep coding scheme is more effec-
tive according to our implementation, and we finally concatenate the resulting
codes of the two layer for further improvement.

To learn the appearance coding layer, we firstly train it in an unsupervised
way and then perform fine-tuning to enhance discriminative property. In the
unsupervised pre-training phase, the objective is to maximize the likelihood of
training data. As the calculation of conditional distribution P (h|v) is tractable
by the sum-product algorithm[8], we may use algorithms like Persistent Con-
trastive Divergence(PCD)[34]. In the fine-tuning process, we associate each in-
put descriptor with the image label. Different from RBM, the nonlinearity of
CaRBM is not clear. Therefore an approximate Jacobian multiplication method
is needed to compute gradients[8]. With the learned CaRBM, each local patch
is encoded into a high dimensional code during inference process.

3.2 Over Spatial Max-pooling
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Fig. 2. The generation of over-complete spatial partition set.

In order to build a image-level signature, pooling operation is usually carried
out to aggregate the local appearance codes. Traditional SPM partitions a given
image into increasingly finer uniform grids (i.e. 1 × 1, 2 × 2, 4 × 4), and then
pools within each region and concatenate all the region vectors as the final image
representation. To overcome the limitation of the simple uniform partition, we
propose to construct spatial partitions in a more flexible scheme incorporating
as many geometric properties of the local features as possible.

As described in Fig. 2, we firstly apply uniform horizontal and vertical grids
to divide the image into rectangular grids (the dotted grids). These grids are
considered as the candidate grids to generate a certain kind of spatial partition.
Then, a type of spatial partition is created by randomly choosing a subset of
the candidate grids. By covering all the possible combinations of the grids, the
spatial partition is able to present various spatial layout information. In addi-
tion, we generate some randomly sampled grids to provide more flexible spatial
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information. All these partitioned regions are collected as the over spatial par-
tition set. Max-pooling is finally performed on the local appearance codes with
each partitioned region and all the region vectors are concatenated as the input
to the next spatial coding module. It is noted that the dimension of each region
vector is D.

3.3 Spatial Coding

With the region vectors as input, spatial coding are then performed to integrate
them into global image representations. If number of partitioned spatial region is
k, then the input dimension of the spatial coding is kD. Since this input is highly
redundant, we also turn to the sparse constrained CaRBM. As shown in Fig. 1,
the spatial coding is comprised of two stacked CaRBM with the output of the first
one taken as the input to the next. Instead of simply concatenating the regions
vectors in SPM, our model explores the generative and discriminative properties
of the spatial distribution to fuse the region vectors into a better representation.
The pre-training is performed layer-by-layer by PCD algorithm to maximize the
likelihood of the training dataset, while the fine-tuning is performed top down
with the image label.

Finally, the obtained representations are employed to train a one-versus-
others SVM to classify an image into the category with max score. The features
of the two layers in spatial coding may be combined to further improve the
performance.

4 Experiments

We start our experiments with an in-depth analysis of the proposed model on
15-Scenes dataset, after which we transpose the findings to experiments on PAS-
CAL VOC 2007 and Caltech-256 dataset. Firstly, we evaluate the effectiveness
of appearance coding compared with the hard-assignment[7], sparse coding[5],
LLC[6] and RBM. Then, we demonstrate the effect of our spatial coding mainly
compared with the popular SPM and some other works considering spatial in-
formation.

For fair comparison, the experiments are conducted closely following the stan-
dard settings [7][5][35]. We adopt a single local descriptor, the SIFT descriptor,
by densely extracting local patches of 16× 16 pixels over a grid with spacing of
4 pixels. The number of hidden units in appearance coding is fixed as D = 1024
for fair comparison, and the dimensions of hidden units for each CaRBM in spa-
tial coding layers are equally set and denoted as S. The number of partitioned
regions in the over spatial max-pooling is 60. The target sparsity is all set to
10%. The SVM classifiers are trained with linear kernels in one-versus-others
scheme and the trade-off parameters to the SVM regularization term are chosen
via 5-fold cross validation on the training set.
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4.1 Results on 15-Scenes

We start our experiments with a most popular scene classification benchmark,
i.e. 15-Scenes. This dataset is complied by several researchers[36][7], including
15 scene categories(e.g. kitchen, coast, highway) with each class containing 200
to 400 images. Following the standard setup, 100 images per class are taken for
training with the rest for testing. The performances are reported by repeating
the experimental process 5 times with different randomly selected training and
testing images.

Table 1. Classification rate (%) comparison of different coding methods on 15-Scenes.

Algorithms Classification Rate

Hard+SPM[7] 81.1± 0.3
Soft+SPM[37] 82.7± 0.4
SC+SPM[5] 80.8± 0.9
LLC+SPM 81.8± 0.60

SSRBM+SPM[16] 84.1± 0.8

Unsupervised RBM+SPM 82.5± 0.5
Unsupervised CaRBM+SPM 86.9± 0.2
Supervised CaRBM+SPM 88.3± 0.3

We firstly evaluate the effect of our appearance coding by comparing to the
baselines and related works with only difference in the feature coding phase.
The final image representations are all compiled by SPM after feature coding.
The detailed performance comparison is shown in Table 1, where “Unsuper-
vised RBM+SPM” and “Unsupervised CaRBM+SPM” denote the method of
adopting RBM and CaRBM module to perform feature coding respectively, and
“Supervised CaRBM+SPM” denotes the results after supervised fine-tuning. It
is shown that our appearance coding method outperforms traditional method,
such as hard assignment, soft assignment, sparse coding and LLC. Our method
also beats SSRBM[16], which is a model of applying sparse regularized RBM.
Compared with SSRBM, CaRBM accomplishes sparsity in a fundamentally dif-
ferent way and performs better according to our experiments. It is also shown
that supervised fine-tuning brings a slight improvement, demonstrating that the
discrimination are enhanced by fine-tuning process.

Secondly, with the coding scheme fixed as supervised CaRBM, we evaluate
the effect of our spatial coding. Fig.3 shows the performance comparison by
varying the dimension of the hidden units in the spatial layers. “S1” denotes
the performance of the output feature in the 1st layer of spatial coding, while
“S1+2” denotes the performance of combining the features of the 2 layers. The
baselines are traditional SPM and the method of directly concatenating of all
the region vectors (denoted as “CAT”). It is shown that the best performance
is achieved with the number of latent units set to about 9, 000, which outper-
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Fig. 3. Performance comparisons of the spatial layers with different dimensions of
hidden units.

forms the SPM by nearly 3 percentage points. We also compare our approach
to some dimension reduction technique, e.g. PCA. The classification accuracy
is obviously improved by the CaRBM than PCA, due to the better exploration
of generative and discriminative properties of the data. Table 2 shows the per-
formance comparison between our best model with state-of-the-art results. Our
best accuracy achieves 91.1%, which outperforms all the related results on this
dataset. Compared with traditional BoF framework, our network needs more
time to train, since both the appearance and spatial coding modules requires to
be learned. However, in the test process, our model is efficient because only for-
ward matrix multiplication operation is needed without any iteration. According
to our evaluation, in “SC+SPM”[5], about 4 seconds are needed to obtain the
pyramid representation for each image, while only 0.3 seconds are required in
the proposed method.

Table 2. Classification rate (%) comparison on 15-Scenes.

Algorithms Classification Rate

Lazebnik et al.[7] 81.1± 0.3
Boureau et al.[38] 85.6± 0.3

Zhou et al.[39] 85.2
Goh et al.[16] 86.0± 0.5
Feng et al.[40] 83.2

Our(Unsupervised) 88.1± 0.3
Our(Supervised) 91.1± 0.2
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4.2 Results on PASCAL VOC 2007

Table 3. Recognition performance (AP in %) comparison on VOC 2007. (The table is
divided into two parts due to the limitation of space.)

Method aero bike bird boat bottle bus car cat chair cow table

SPM[35] 68.7 57.0 39.9 64.6 22.0 58.8 73.9 53.8 52.4 38.6 49.2

LLC+SPM[35] 69.8 57.6 42.0 66.5 22.4 55.6 72.8 56.9 51.7 42.9 45.1

FK+SPM[35] 78.9 67.4 51.9 70.9 30.8 72.2 79.9 61.4 55.9 49.6 58.4

Object Bank[41] 68.7 53.4 34.6 61.8 19.8 49.9 75.0 42.1 48.7 28.7 50.2

Our(unsupervised) 77.3 67.3 51.2 72.1 31.8 70.5 76.0 59.3 55.8 48.4 57.9

Our(supervised) 80.8 69.1 53.0 73.5 33.2 72.2 78.3 61.8 57.5 51.6 59.3

Method dog horse motor person plant sheep sofa train tv Mean

SPM[35] 36.9 75.6 61.6 81.6 20.5 40.1 50.9 73.4 49.2 53.4

LLC+SPM[35] 39.5 74.1 62.0 80.9 24.5 38.8 49.4 71.2 51.0 53.8

FK+SPM[35] 44.8 78.8 70.8 84.9 31.7 51.0 56.4 80.2 57.5 61.7

Object Bank[41] 31.8 71.4 53.1 79.6 15.6 29.0 44.3 67.3 49.0 48.7

Our(unsupervised) 46.1 78.5 69.0 84.1 29.8 48.3 56.9 81.0 56.9 60.9

Our(supervised) 48.6 80.6 70.3 86.4 32.3 50.5 59.5 83.2 58.5 63.1

The PSCAL Visual Object Challenge (VOC) datasets are widely used as
testbeds for evaluating algorithms for image understanding tasks and provide a
common evaluation platform for both object classification and detection. This
dataset is considered to be an extremely challenging one because all the images
are daily photos obtained from Flicker where the size, viewing angle, illumi-
nation, appearances of objects and their poses vary significantly with frequent
occlusions. The PASCAL VOC 2007 dataset consists of 9, 963 images from 20
classes, which are divided into “train”, “val” and “test” subsets, i.e. 25% for
training, 25% for validation and 50% for testing. The classification performance
is evaluated using the Average Precision (AP) measure, a standard metric used
by PASCAL challenge. It computes the area under the Precision/Recall curve,
and the higher the score, the better the performance. We use the train and vali-
dation sets for training and report the mean average precision for the 20 classes
on the test set as the performance evaluation. In the experiment setup, the size
of the latent units in the appearance coding is 1024, while the size of each layer
in spatial coding is set to 10, 000.

The performance comparisons of all the 20 classes are shown in Table 3.
“SPM” denotes the method of applying hard assignment and SPM model, while
“LLC+SPM” represents the method of using locality-constrained linear coding
instead of hard assignment. “FK+SPM” denotes the method of using fisher
kernel to encode the SIFT descriptors, which is the state-of-the-art feature coding
method. In “Object Bank”[41], pre-trained object detectors are employed to
extract image representations. As shown in the table, our method leads the
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performance for most categories. It is also demonstrated that the supervised
fine-tuning is effective to improve the recognition performance. However, for
some categories, such as car and sheep, our method decreases the accuracy. This
is mainly on account of the highly diversity of the images in this challenging
dataset.

4.3 Results on Caltech-256

porcupine scorpion ostrich

tweezer teapot backpack

butterfly dog toaster

Fig. 4. Example images of Caltech-256 dataset.

The Caltech-256[42] dataset totally holds 29, 780 images in 256 object cate-
gories, where the number of images in each category varies form 31 to 800. This
dataset is very much challenging as it possesses highly intra-class variability and
object location variability. Some example images are shown in Fig.4. Following
the standard experiment setup on this dataset, we train our model on 30 and 60
images per class and test on the rest. The other parameters setup is transposed
from the former experiments on 15-Scenes.

Table 4. Classification rate (%) comparison on Caltech-256.

Algorithms 30 training 60 training

KSPM[7] 34.1 —
ScSPM[5] 34.0± 0.4 40.1± 0.9

LLCSPM[6] 41.2 47.7
GLP[40] 43.2 —

Our(Unsupervised) 46.5± 0.3 50.2± 0.4
Our(Supervised) 48.7± 0.2 53.2± 0.4

The performance comparison is shown in Table 4. In this challenging dataset,
our method also consistently leads the performance on all the cases and outper-
forms the baseline ScSPM by more than 10%. GLP[40] is a method of using
discriminatively learned pooling operation to aggregate local features and our
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model also behaves better than it. The reason may be that our model explores
more kinds of latent spatial layout and integrate the regions beyong the simple
concatenation scheme. The results on this challenging object datasets demon-
strate the effectiveness of the proposed deep image representation model.

5 Conclusion

In this paper, we address the issues of local feature coding and spatial informa-
tion incorporation in the BoF model and propose a deep appearance and spatial
coding model to build more representative and discriminative representation for
image classification. We utilizes the Cardinality Restricted Boltzmann Machines,
which is capable of combining generative and discriminative properties. With the
CaRBM as the base module, our model includes appearance coding, over spatial
max pooling and spatial coding operations, which is pre-trained in an unsuper-
vised scheme and then fine-tuned with image labels. The extensive experiments
on 15-Scenes, PASCAL VOC 2007 and Caltech-256 datasets have shown the ef-
fectiveness of our model in feature coding and spatial information integration,
and the classification performances outperform the baselines and related works.
Possible future work involves directly learning local patch features from the raw
image pixels to make the model an end-to-end learning framework.
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