
Regularized Hierarchical Feature Learning with Non-Negative Sparsity and
Selectivity for Image Classification

Bingyuan Liu1, Jing Liu1, Chunjie Zhang2,Xiao Bai3 and Hanqing Lu1,
1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences.

2School of Computer and Control Engineering, University of Chinese Academy of Sciences.
3 School of Computer Science and Engineering, Beihang University.

1{byliu,jliu,luhq}@nlpr.ia.ac.cn, 2zhangcj@ucas.ac.cn,3baixiao.buaa@gmail.com.

Abstract—Recently, many deep networks are proposed to
learn hierarchical image representation to replace tradition-
al hand-designed features. To enhance the ability of the
generative model to tackle discriminative computer vision
tasks (e.g. image classification), we propose a hierarchical
deconvolutional network with two biologically inspired prop-
erties incorporated, i.e., non-negative sparsity and selectivity.
First, we propose a single layer deconvolutional model with
a raw image as input, attempting to decompose the input
as a weighted sum of feature maps convolving with filters.
Here, the filters are the model parameters common to all the
inputs, while the feature maps and the summing weights are
specific to the input. The non-negative sparsity is formulated
as the l1-norm regularizer on the feature map, which is used
to generate feature representations for image classification.
And the selectivity is forced on the filters to make different
filters active different inputs, through requiring the sparsity
on the summing weights specifically. The two properties are
summarized into an overall cost function, which can be
solved with an alternatively iterative algorithm. Then, we
build multiple layer deconvolutional network by stacking the
single models, where the next-layer inputs are the results of
a 3-D max-pooling operation on the inferred feature maps of
the front layer, and train the network in a greedy layerwise
scheme. Finally, we explore the feature maps of each layer
to generate the image representations and input them to a
SVM classifier for the classification task. Experiments on
two image benchmark datasets of Caltech-101 and Caltech-
256 demonstrate the encouraging performance of our model
compared with other deep feature learning models as well
as some hand-designed features.

Keywords-image classification; deep learning

I. INTRODUCTION

Most computer vision systems critically rely on the
quality of image representations. However, how to build
a suitable feature extraction model remains challenging.
In the past decade, manually-designed image descriptors
dominate this area and some well designed features, such
as Gabor, SIFT and HOG, have precipitated dramatic
success. Although these hand-crafted features may benefit
from human ingenuity and prior domain knowledge to
some extent, the choice of features is highly dependent
on dataset, task and experience. It is also difficult to
detect more complex features, including mid and high-
level structures in images. Over the recent years, there
is a growing interest in building deep models for learn-
ing hierarchical image representations to replace tradi-
tional engineered descriptors. These include Deep Belief
Networks[1], Deep Boltzmann Machines[2] and Deconvo-

lutional Networks[3], which attempt to build hierarchical
generative models of the input datas. The deep architecture
is motivated by the hierarchical nature of human vision
cortex and may be improved with more knowledge from
the human cognitive process incorporated.

Usually a hierarchical architecture consists of feature
detector units arranged layer by layer with the objective of
reconstructing input data. However, two critical properties
are ignored in most previous models. One is the non-
negative sparsity of the latent features. Some biologi-
cal evidences[4] indicate the non-negative sparse coding
model is relatively similar to the signal process within
the brain, and it has been demonstrated that this non-
negative sparse constraints is useful to extract features
from natural images. The other one is the selectivity of
the hierarchical model. That is, a certain neuron unit only
senses a particular image structure while keeps silent for
other stimulations. It is suggested from the biological
evidence that the response possibilities of some neurons in
the temporal cortex are highly selective for certain object
categories like faces or hands and even specific people[5].
The selective property is also significant to enhance the
discrimination of the learned features especially when
performing discriminative tasks (e.g. image classification).
Therefore how to incorporate the non-negative sparsity
and selective property into the hierarchical architecture is
essential to improve the performance.

To address above issues, we propose a deconvolution-
al network architecture with non-negative sparsity and
selectivity regularization. The deconvolutional network
decomposes an input image in a hierarchical fashion with
multiple alternating layers of deconvolution and max pool-
ing. First, we present a single deconvolutional layer with
raw image as input. To integrate non-negative sparsity,
we employ l1 regularizer on the latent maps and enforce
them to be non-negative meanwhile. Though the non-
negativity sparsity reduces the flexibility of the model, we
demonstrate it does help to learn better representations. To
introduce selectivity, it is difficult to directly regularize the
feature maps. Instead, we introduce weighting parameters
between the input and filters to measure the selectivity
and then employ l1 regularization on these parameter-
s encouraging that seldom filters are activated given a
certain input. In this way, the selectivity is enhanced as
each filter is activated for some particular input structures
and different filters respond to different kinds of input.

The two characteristics are summarized into an overall
cost function, and a 3-D max pooling operation is applied
on the inferred feature maps. Then, we build multiple
layers of deconvolutional network by stacking the single
models and train in the greedy layerwise scheme. Finally,
with the trained model we can extract an over-complete
image representation in a purely unsupervised way and
explore it as the input of SVM classifier with a spatial
pyramid matching kernel to perform image classification.
Extensive experiments on the benchmarks of Caltech-
101 and Caltech-256 demonstrate the effectiveness of the
proposed method compared to baselines and related works.

II. RELATED WORK

Recently, many researches have focused on building
hierarchical feature learning model as an alternative to
classical hand-crafted descriptors. One class of hierar-
chical architecture is a family of biologically-inspired
heuristic models[6], motivated by the simple-complex cell
model of mammal vision system. Convolutional Neural
Network(CNN)[7] is one of the most successful hierar-
chical models. It is constructed by alternating between
convolutional filtering and max-pooling, and trained in a
purely supervised scheme by back propagation algorithm.
Recently reported performances of CNN in some databas-
es have outperformed classical bag-of-feature model[8].

Our proposed model is developed with another deep
learning framework of stacking shallow generative model
by greedy layerwise unsupervised learning scheme. Deep
Belief Networks(DBN)[9], a pioneer work proposed by
Hinton et al., builds multiple layers of directed sigmoid
belief nets with the top layer as a Restricted Boltzmann
Machines(RBM). Lee et al.[10] extended DBN by in-
corporating convolution operation for extracting laten-
t features from raw image pixels. The closest models
to ours are those based on convolutional sparse cod-
ing. Kavukcuoglu et al.[11] proposed to extract features
through learned convolutional filter banks and construct
a multi-stage convolutional network, and Zeiler et al.[3]
built a deconvolutional network by alternately stacking
convolutional sparse coding and max-pooling layers.

How to regularize the deep architectures for effectively
learning well representations is critical, as deep models
may easily suffer from over-fitting problem. Motivated
by the successful application of sparse model[12], some
works introduce sparse regularizer into feature learning
model to improve the discriminative performance. In [10],
the sparse constraints are achieved by specifying a desired
probability of being active and then adding an additional
penalty term to encourage the actual distribution close
to the desired. Hinton et al.[13] proposed dropout by
randomly omitting half of the feature detectors on each
training case to prevent overfitting, while Wan et al.[14]
generalized this idea by setting a randomly selected subset
of weights within the network to zero for regularizing large
fully-connected layers. Different from them, we jointly
explore the non-negative sparsity and selectivity as the
regularizer in our model, to enhance the discriminative

Feature Map

Feature Map

3D Max Pooling

+

* * * *

Deconvolution

Input Image

Non-negative Sparsity

Selectivity Regularizer

Figure 1. Single deconvolutional network layer consists of convolutional
non-negative sparse coding and 3-D max pooling operations.

ability of the inferred hierarchical feature representation.
Some other works employ the regularization of manifold
property to learn proper features[15][16].

III. THE PROPOSED DECONVOLUTIONAL NETWORK

A. Single Layer

Firstly, we consider a single deconvolutional layer ap-
plied to an image, as shown in Figure 1. With an image
y composed of N0 channels y1, . . . , yN0 (e.g. RBG chan-
nels) as input, the layer decomposes it via two operations:
deconvolution and max-pooling.

Deconvolution: The deconvolution operation decom-
poses each channel of the input as a sum of N1 latent
2-D feature maps x1

i (i = 1, 2..., N1) convolved with filters
f1
i,j(i = 1, 2, ..., N1, j = 1, 2, ..., N0). To measure the

selectivity of the filter, we introduce weighting parameters
w1

i,j(i = 1, 2, ..., N1, j = 1, 2, ..., N0) between the input
channel i and the feature map j. Thus the reconstruction
of the input channel is formulated as a weighted linear
sum of convolutions:

ŷ1c =

N1∑
i=1

w1
i,c(x

1
i ∗ f1

i,c) (1)

where we denote the reconstruction of channel c as ŷ1c .
For notational brevity, we combine the convolution and
summing operations into a single operation matrix F 1

and denote the weighting operation as W 1, thus the
reconstruction is denoted as ŷ1 = F 1W 1x1.

To guarantee a stable solution, the objective of the
deconvolution is to minimize the reconstruction error
while impose certain regularization on latent feature maps.
As non-negative sparsity is helpful to learn reasonable and
discriminative features, we employ a l1 norm regularizer
on x1 and enforce it to be non-negative with a strict
constraint. Note that the introduced weighting parameters
wi,j may be regarded as a selectivity measurement of the
filters because the distribution of the non-zero wi,j decides
which filters are activated. A good selective property
means that seldom filters are activated for a particular kind
of input and different filters respond to different inputs.
To enhance it, a l1 norm regularizer is also applied on

the weighting matrix. These two regularizations may be
combined into an overall cost function for the single layer:

C1(y) =
1

2
∥ŷ1 − y∥22 + λ1

Ni∑
i=1

|x1
i |1 + β1|W 1|1

s.t. x1
i ≽ 0,W 1 ≽ 0

(2)

where λ1 and β1 are the tradeoff parameters to balance
the relative contributions of the reconstruction error and
the regularization terms. A non-negative constraint is also
imposed on W 1 to obtain reasonable solutions. The filters
are the network parameters common to all inputs, while
features maps x1 and weights W 1 are specific to input.

Max-pooling: After the above deconvolution, a 3-D
max-pooling is performed on the learned features maps,
introducing some local invariance and allowing higher
layer to capture structure at a larger scale. Beyond regular
max-pooling, 3-D max-pooling occurs both within the
feature map and between adjacent maps. 3-D cubes are
firstly applied to partition the feature maps and then both
values and location switches of the maximum are recorded
as shown in Figure 1. We denote h and s as the pooled
maps and location switches respectively, and formulate the
3-D max pooling as [h, s] = P (x), which is a nonlinear
operation. However, given s fixed, it becomes a linear
operation denoted as h = Psx, with Ps being a binary
selection matrix set by switches s. Oppositely, a 3-D
max-unpooling operator Us is utilized for reconstruction,
which takes the elements of h back into x at the locations
recorded in s with the others set to zero. It is also a linear
operation when s is fixed, denoted as x̂ = Ush.

B. Multiple Layers

It is easy to build a deep deconvolutional network by
stacking the single layer module, where the outputs of
layer l are taken as the inputs to layer l + 1, as shown
in Figure 2. The architecture remains the same for each
layer but the number of feature maps Nl may vary. The
higher layer of our model is also trained with respect to
the original input image rather than the input of current
layer. With the reconstruction of layer l denoted as ŷl, the
objective is to minimize the reconstruction error to the
original input image y with the regularization terms:

Cl(y) =
1

2
∥ ŷl − y∥22 + λl

Nl∑
i=1

|xl
i|1 + βl|W l|1

s.t. xl
i ≽ 0,W l ≽ 0

(3)

We denote Rl as the reconstruction operator taking the
feature maps xl backward down to the original input space
with alternative convolution, weighting and unpooling
operations: ŷl = F 1W 1Us1F

2W 2Us2 ...F
lW lxl = Rlxl.

A reverse projection operator (Rl)T is also needed for
calculating gradients, which takes the input of the network
forward up to the feature maps of layer l: (Rl)T =
(W l)T (F l)TPsl−1

(W l−1)T (F l−1)T . . . Ps1(W
1)T (F 1)T ,

where (F l)T is the flipped version of filters F l.

Algorithm 1 Training of the proposed model
Input:

Training set Y , Number of layers L, Epoch E, ISTA step T ,
Regularization coefficients λl, βl, Shrinkage parameter θl

Output:
Filters F , Feature maps X , Location switches S, Weight W

1: for l = 1 : L (Loop over layers) do
2: Init. feature maps xl ∼ 0,filters F l ∼ N(0, ϵ)
3: for epoch = 1 : E (Epoch iteration) do
4: for i = 1 : N (Loop over images) do
5: # Inference phase
6: for t = 1 : T (ISTA iteration) do
7: Compute gradient Gxl , GW l using Eq.4 and Eq.5
8: Gradient step: xl = xl− θl

λl
Gxl , W l = W l− θl

βl
GW l

9: Shrink step:xl = max(|xl| − θl, 0) · sign(xl), W l =
max(|W l| − θl, 0) · sign(W l)

10: Project step: xl = max(xl, 0), W l = max(W l, 0)
11: Pooling operation: [hl, sl] = P (xl)
12: end for
13: # Learning phase
14: Compute gradient Gfl using Eq.6
15: Update f l by conjugate gradient algorithm
16: end for
17: end for
18: end for

C. Model Learning

Our proposed model can be efficiently learned in a
layer-by-layer scheme starting from the bottom layer to the
top. In our deconvolutional network, the only parameters
to be estimated is the filters of each layer. However, when
training the network, the xl, W l and F l are all unknown.
Therefore, we alternately minimize Cl(y) over the feature
maps and weights with filters fixed, and update the filters
while keeping the other variables.

With the filters fixed, the objective is to solve Eq.3 by
finding the optimal feature maps x and weights W given
an input image y. Here, we adopt ISTA[17], which is an
iterative framework consisting of gradient, shrinkage and
projection steps. To apply ISTA, we firstly compute the
gradients of the reconstruction error term with respect to
xl and W l via the following equations:

Gxl = (Rl)T (Rlxl − y) (4)

GW l = (F l)T (Rl−1)T (xl)T (Rlxl − y) (5)

Then we may update xl and W l by gradient descent.
Following the gradient step, a per-element shrinkage op-
eration is performed to clamp small elements in xl and
W l to zero, increasing the sparsity. To satisfy the non-
negative constraints, the solutions are finally projected
onto non-negative set. Some detailed notes are shown in
Algorithm.1. As all the above operations are amenable to
parallelization, the iterations are executed very efficiently.

To update filters, we utilize linear conjugate gradient
algorithm as the model is linear in F l when fixing other
variables. The gradient of the cost function with respect
to filters is obtained by the following function:

Gf l
i,j

=
∂Cl

∂f l
i,j

= [Psl−1
(Rl−1)T (Rlxl − y)]i ∗W lxl

j (6)

This is a convolution between two terms, where the left
term is the reconstruction error propagating up to layer

deconvolution

3D max pooling
deconvolution 3D max pooling

deconvolution

Input

300

300

15

5

306

306 102

102
108

108

50
25 36

36
42

42

100
50 14

14

150 20

20

Reconstruction Operator

Projection Operator

Layer 1
Layer 2

Layer 3
Layer 4

Figure 2. Deep architecture of our proposed model. It is built by stacking the single layer modules.

l − 1 and the right one is the weighted feature maps
of current layer. The overall training algorithm of our
proposed model is summarized in Algorithm 1.

IV. IMAGE CLASSIFICATION PIPELINE

With the trained model, hierarchical feature maps are
obtained for a given input image by applying ISTA al-
gorithm layer-by-layer. As our model is conducted in a
totally unsupervised manner, a supervised classifier must
be combined to perform image classification. We utilize
the Spatial Pyramid Matching(SPM[18]) to construct final
image representation by replacing the standard SIFT de-
scriptors with the features learned by our model and then
turn to train a SVM to classify the images.

Although the filters are shared between images, the lo-
cation switches and weighting parameters are not. Thus the
feature maps of two images are not directly comparable.
Taking advantage of the introduced selective property, we
separately reconstruct feature maps of the top layer to
extract features as input to SPM. For an input image,
our network decomposes it into multiple layers of feature
maps. First, we take the largest activations of each feature
map in the top layer L and separately reconstruct each
one down to the input space, obtaining NL reconstructed
images (ŷ1, ŷ2, . . . , ŷNL) with each one including different
image parts. Because features in the 1st layer are roughly
similar to SIFT descriptors, we extract local features from
corresponding feature maps of the NL reconstructions in
layer 1 and obtain NL distinctive spatial pyramid represen-
tations. These features are finally combined as the image
representation for SVM classifier. We also directly employ
the actual feature maps of layer 1 to construct image
representations, and the two levels of representations may
be combined to further enhance the performance.

V. EXPERIMENTS AND RESULTS

We implement our method with the toolbox developed
by Matthew Zeilier[3], the GPU library GPUmat1 and
the efficient GPU convolutional library2. Our model is
trained on a 24-core CPU and an Nvidia Tesla M2075
GPU for parallelization and fast computing. We train 4-
layer model with sizes of filters in each layer set to
7 × 7 on two image benchmarks Caltech-101[19] and

1http://http://sourceforge.net/projects/gpumat/
2http://code.google.com/p/cuda-convnet/

Caltech-256[20]. The parameters setup of our model is
presented in Figure 2, where the number of feature maps
in each layer is 15, 50, 100, 150 and the sizes of pooling
are 3× 3× 3, 3× 3× 2, 3× 3× 2, 3× 3× 2 respectively.
The tradeoff coefficients λ and β of the 4 layers are both
set as [1, 10, 50, 100] according to our implementation. A
little preprocess is performed before inputting images into
the network by converting each image to gray-scale and
resizing to 300× 300 with zeros padding to preserve the
aspect ratio. A local subtraction with Gaussian filter is also
conducted and the intensities are normalized to [0, 1].

With the trained model, we perform image classifi-
cation by integrating with SPM classifier. Compare to
the standard SPM model, the only difference is that we
replace the SIFT descriptors with our learned features. We
densely extract local descriptors by the method described
in Section IV over a grid with 4 pixels spacing on
patches of 16 × 16 and the size of codebook is fixed
as 2000. The spatial pyramid representations are obtained
by dividing the maps into non-overlapping regions with
1 × 1, 2 × 2, 4 × 4 grids, and χ2 kernels are utilized to
train SVM classifiers.

In the following subsections, we report the classification
performance on Caltech-101 and Caltech-256. We mainly
compare our method to standard SPM model with SIFT
descriptors and some hierarchical feature learning meth-
ods. Some learned filters are also visualized to investigate
what we learn and demonstrate the effectiveness of our
model to capture hierarchical image structure information.

A. Results on Caltech-101

The Caltech-101 dataset[19] contains 9, 144 images
from 102 different categories, including 101 object cate-
gories and 1 additional background class, with high shape
variability. The number of images per category varies
from 31 to 800. We train a 4-layer model on 30 images
per category and the overall training time is about 2
hours. When performing classification task, we follow the
common experiment setup, training the SPM classifier on
30 images per category and testing on the rest.

The classification performances are shown in Table I.
DNN denotes the deconvolutional network with only non-
negative sparsity on feature maps, while DNS represent
the model with only selectivity regularizer imposed on
the weighting parameters. The method with both non-

Layer 1 Layer 2

Layer 3

Layer 4

Figure 4. Visualization of the learned filters in each layer of our model. It is shown that our model captures image structures information from
low-level edges to mid-level geometric elements and high-level objects.

Table I
CLASSIFICATION RATE(%) COMPARISON ON CALTECH101.

Algorithms Classification Rate
SIFT[18] 64.60± 0.8

Macrofeatures[21] 70.9± 1.0
CDBN[10] 65.4± 0.5

ConvSC[11] 65.7± 0.7
DN(layer 1)[3] 67.8± 1.2
DN(layer 4)[3] 69.8± 1.2

DN(layer 1+4)[3] 71.0± 1.0
DNN (layer 1) 68.4± 0.3
DNS (layer 1) 68.8± 0.2

DNNS (layer 1) 69.0± 0.8
DNN (layer 4) 70.3± 0.5
DNS (layer 4) 71.5± 0.4

DNNS (layer 4) 72.5± 0.2
DNNS (layer 1+4) 73.3± 0.4

metronome (50.0/100.0) cougar_body (23.5/58.8) anchor (58.3/91.7)

dalmatian (70.3/62.2) cannon (61.5/53.9) cellphone (96.6/89.7)

Figure 3. Examples of the Caltech-101 set. Top: the top 3 categories
where our model improves most. Bottom: the 3 categories where our
method decreases performance. The numbers in the brackets indicate
the classification rate (DN(layer 1+4)/DNNS (layer 1+4))

negative sparsity and selectivity is denoted as DNNS . It
is shown that the non-negative sparsity and selectivity
do help to enhance the discrimination of the learned
features, and the best classification rate is achieved by
employing the combined features of 1-st and 4-th layer
from the model trained with both properties. Compared
with the most related model[3] denoted as DN, which
is a 4-layer model with only sparsity regularization on
feature maps, we obtain an improvement of more than
2%. The enhancement in layer 4 is more obvious, as
the integrated properties are more significant to the over-
complete feature maps in high-level layer. Our results
also outperform some other deep learning model like
CDBN[10] and ConvSC[11]. We also compared with the
famous SIFT descriptor and its variant Macrofeatures[21],
demonstrating our learned features perform better than

these hand-designed descriptors. Figure 3 shows some
examples of the classes that our model increases the
performance most compared to [3] and some bad examples
that our model decrease the performance. It is investigated
that consistent improvements are obtained for most cate-
gories. The complex texture information may influence the
performance on some classes.

Figure 4 demonstrates what we learn in each layer of the
model. How to visualize the trained units in deep model
is a critical problem, since it is meaningless by directly
showing the filter matrixes in high layer. In this paper, we
visualize high-level filters by separately taking the largest
activation in each feature map over the entire training set
and reconstructing down to the input space. In another
view, we inspect the filters by evaluate what kind of input
activate them strongest. It is shown that the filers in the
1st layer are the edge structures in different orientations
and scales. This is why the features extracted from this
layer are similar to SIFT descriptors. In layer 2, the filters
capture some edge junctions, curves, parallel lines and
other types of edge combinations. The filters in layer 3
represent more complex geometric elements beyond those
in layer 2. We can see some filters already capture object
parts in this layer, such as wheel and wrench. In the 4-th
layer, the learned filters capture object parts and complete
objects, such as the shown face, chair and ball, which
are very high-level image information. The visualizations
demonstrate that our model captures the hierarchical image
structures from low-level edges to mid-level geometric
elements, and high-level object structures.

B. Results on Caltech-256

The Caltech-256[20] dataset is an extension of Caltech-
101, which holds 29, 780 images falling into 256 cate-
gories. This is a much more challenging database as it
possesses much higher intra-class variability and object
location variability. Using the same parameters as the
experiments on Caltech-101, we train a 4-layer model on
30 images per class and evaluate on the rest.

The performance comparison results are shown in Table
II. In the more challenging dataset, our model also leads

Table II
CLASSIFICATION RATE(%) COMPARISON ON CALTECH256.

Algorithms Classification Rate
SIFT[20] 29.5± 0.5

ScSPM[12] 34.0± 0.4
DN(layer 1)[3] 31.2± 1.0
DN(layer 4)[3] 30.1± 0.9

DN(layer 1+4)[3] 33.2± 0.8
DNNS (layer 1) 32.2± 0.2
DNNS (layer 4) 33.6± 0.2

DNNS (layer 1+4) 35.0± 0.3

the performance and the best result is also obtained by the
combined 1-st and 4-th layer features from the proposed
deconvolutional network with both non-negative sparsity
and selectivity regularization(DNNS). It is shown that
our result outperforms ScSPM[12] which is an excellent
extension of SPM using sparse coding to encode SIFT
features. In the much more challenging condition, consis-
tent improvements are also obtained for most categories,
demonstrating the effectiveness of integrating more regu-
larized properties in deep feature learning models.

VI. CONCLUSION

In this paper, we propose an improved deep decon-
volutional network by jointly incorporating non-negative
sparsity and selectivity property. An overall cost function
with the two regularizers is proposed for each layer and
then we build a 4-layer network by greedy layerwise
unsupervised learning scheme. It is shown that our model
effectively learns hierarchical image features from low-
level edges to high-level complex objects. Experiments on
Caltech-101 and Caltech-256 datasets show outperforming
performances compared to related deep learning models as
well as classical hand-designed features, demonstrating the
effectiveness of our method to enhance the discriminative
property of deep feature learning model.

VII. ACKNOWLEDGMENT

This work was supported by 973 Program
(2010CB327905) National Natural Science Foundation of
China (61272329, 61273034, 61202325,61303154), the
President Fund of UCAS and the Open Project Program
of the National Laboratory of Pattern Recognition(NLPR).

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science, vol.
313, no. 5786, pp. 504 – 507, 2006.

[2] R. R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann
machines,” in AISTATS, vol. 5, 2009, pp. 448–455.

[3] M. Zeiler, G. Taylor, and R. Fergus, “Adaptive deconvolu-
tional networks for mid and high level feature learning,” in
ICCV, 2011.

[4] P. O. Hoyer, “Modeling receptive fields with non-negative
sparse coding,” Neurocomputing, vol. 52-54, pp. 547–552,
2003.

[5] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and
I. Fried, “Invariant visual representation by single neurons
in the human brain,” Nature, vol. 435, pp. 1102–1107,
2005.

[6] M. Riesenhuber and T. Poggio, “Hierarchical models of
object recognition in cortex,” Nature Neuroscience, vol. 2,
no. 11, pp. 1019–1025, 1999.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceed-
ings of the IEEE, vol. 86, no. 11, pp. 2278–2324, November
1998.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks.” in
NIPS, 2012.

[9] G. E. Hinton and S. Osindero, “A fast learning algorithm
for deep belief nets,” Neural Computation, vol. 18, p. 2006,
2006.

[10] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Con-
volutional deep belief networks for scalable unsupervised
learning of hierarchical representations,” in Proceedings of
the 26th International Conference on Machine Learning,
2009, pp. 609–616.

[11] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor,
M. Mathieu, and Y. LeCun, “Learning convolutional feature
hierarchies for visual recognition,” in NIPS, 2010.

[12] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial
pyramid matching using sparse coding for image classifi-
cation,” in CVPR 2009, 2009.

[13] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Improving neural networks by
preventing co-adaptation of feature detectors,” CoRR, vol.
abs/1207.0580, 2012.

[14] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus,
“Regularization of neural network using dropconnect,” in
ICML, 2013.

[15] C. Li, Q. Liu, J. Liu, and H. Lu, “Learning ordinal
discriminative features for age estimation,” in CVPR, 2012.

[16] C. Li, Q. Liu, J. Liu, and H. Lu, “Ordinal regularized
manifold feature extraction for image ranking,” Signal
Processing, vol. 93, no. 6, pp. 1651–1661, 2013.

[17] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202,
2009.

[18] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories,” in CVPR, 2006.

[19] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories,” CVIU,
vol. 106, no. 1, pp. 59–70, 2007.

[20] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object
category dataset,” 2007.

[21] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning
mid-level features for recognition,” in CVPR, 2010.

