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Abstract

The bag of visual words (BoW) model is one of the most
successful model in image classification task. However, the
major problem of the BoW model lies in the determina-
tion of visual words, which consists of codebook training
and feature encoding phases. The traditional K-means and
hard-assignment method completely ignore the structure of
the local feature space, leading to high loss of information.
To alleviate the information loss, we propose to incorpo-
rate the neighborhood information of the features into the
codebook training and feature encoding process. We firstly
propose a model to roughly measure the influence of the dis-
tribution of the neighboring features. Then we combine the
proposed model with the traditional K-means method in a
probability perspective to train the visual codebook. Final-
ly, in the feature encoding phase, both the hard-assignment
and soft-assignment method are improved with the proposed
neighborhood information term. We investigate our method
on two popular datasets: 15-Scenes and Caltech-101. Ex-
perimental results demonstrate the effectiveness of our pro-
posed method.

1. Introduction

Image classification remains to be one of the most sig-
nificant but challenging task in the computer vision and
machine learning community. In recent years the bag of
visual words(BoW)[3] has been extremely popular in im-
age classification systems. The BoW model usually start-
s from well-engineered local features such as SIFT[11] or
HOG[4], a visual codebook is then trained and local fea-
tures are encoded into an overcomplete representation. A
compact histogram representation is calculated as the glob-
al image representation. Finally, a classifier, usually SVM
or logistic regression is trained to predict the semantic label
of the image.

The major problem of the BoW model is the determina-

Figure 1. A toy example illustrating the neighborhood information
in the codebook model. The blue dots are the feature samples, the
labeled red circles are the learned codewords, and the green trian-
gles are the data sample to be encoded. It is shown that the local
distributions of the feature space should be considered to assign
the triangle data sample into a reasonable codeword.

tion of visual words which consists of two phases: code-
book learning and feature encoding. In the learning phase,
an overcomplete codebook is trained in an unsupervised
manner. Local features are then encoded by assigning the
feature vectors to the visual words. The traditional BoW
method applies K-means algorithm to train the codebook
and vector quantization(VQ) to encode the features to con-
struct high level image representations. The simplicity of
such a quantized codebook representation would come with
a high information loss and the discriminative information
is considerably reduced. While the traditional VQ method
is found too restricted to encode the local features, [17]
proposed the visual word ambiguity model to soft-assign
the feature into several nearest codewords. Yang et al.[19]
and Wang et al.[18] proposed to relaxed the restrictive con-
straint by sparsity or locally-constrained linearity regular-
ization. However, all the methods try to use some centroid-
s to represent the whole feature space without considering
the local structure of the feature space. As the toy exam-
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ple shown in Fig.1, the labeled red circles are codewords
trained by unsupervised clustering method. By the tradi-
tional VQ method, the triangle data sample A is assigned to
the codeword b. However, considering the local distribution
of the features, most of the similar neighbors of A are as-
signed into the word d, it seems more reasonable to encode
A into the word d even if A is in the area of the codeword
b. These cases can be more common if the feature vector
is very high-dimensional (e.g. SIFT) and the codebook is
highly over-complete. While the traditional method can on-
ly capture the global distribution and statistic property of
the feature space, we believe the local distribution of the
features should also be incorporated.

To address above issues, this paper proposes to incorpo-
rate the neighborhood information to improve the K-means
and VQ algorithm making the codebook model more ro-
bust and semantical. Firstly, we propose a model to roughly
measuring the influence of the distribution of the neighbor-
hood, as a complement to the centroid based assignment
scheme. Then, we combine the proposed model with the
traditional K-means method in a probability perspective to
train the visual codebook. In the feature encoding phase,
we improve both the hard-assignment and soft-assignment
method with the proposed neighborhood information term.
We evaluate the effect of the proposed model on the scene
dataset 15-Scenes and object dataset Caltech-101 and the
improvement over the baselines show the effectiveness and
efficiency of the proposed method.

The rest of the paper is organized as follows. Section 2
reviews the related work of BoW models. In Section 3.1,
we revisit the traditional BoW model, especially the coding
phase. We elaborate our proposed model of incorporating
the neighborhood information into the coding phase in Sec-
tion 3.2. The experimental evaluation is given in Section 4,
and we conclude in Section 5.

2. Related Work
Over the years the BoW[3] image representation model

has been proven effective and widely used in image classi-
fication due to its invariance to illumination, object trans-
lation, and rotation. Once local features(i.e. SIFT[11],
HOG[4], or LBP[14]) are extracted, the codebook train-
ing and feature encoding phase would be the most impor-
tant and govern the quality of image representation. Tra-
ditional BoW applies the K-means method to generate the
codebook which minimizes the variance between the clus-
ters and the data. However, the simplicity and compactness
of such a quantized codebook representation comes with a
high cost and the discriminative information is considerably
reduced[1]. The discriminative power may be improved
by alternative clustering algorithms[8][10] or incorporating
some supervised information[12][13][7]. The feature en-
coding process can be regarded as assigning each feature to

the trained codewords. Traditional BoW adopts the vector
quantization which is also regarded as the hard assignmen-
t scheme. The hard assignment method may induce severe
information loss by assigning each feature to only one code-
word. To relax the too restricted sparsity, [17] proposed the
soft-assignment scheme by assigning each local feature to
several nearest codewords.

Another problem of the BoW model is the ignorance of
the spatial information as the model describes an image as
an orderless collection of local features. To overcome this
problem, one popular extension, called as Spatial Pyramid
Matching(SPM)[9], has been shown effective by exploiting
the absolute spatial information of location regions. More
specially, the SPM model requires to first partition each im-
age into a sequence of increasingly finer uniform grids (i.e.
1× 1, 2× 2, 4× 4) and then concatenate the BoW features
in each grids to form a high dimensional image feature.

More recently, Yang et al.[19] extended the SPM mod-
el using Sparse Coding(ScSPM), and showed obvious im-
provement in image classification. By replacing Kmean-
s and hard-assignment with sparse coding, their method
automatically learn the codebook and search for the op-
timal weight to assign each local feature into the corre-
sponding codewords. Wang et al.[18] proposed to exten-
t the SPM model with the locality-constrained linear cod-
ing (LlcSPM), which considers the locality information in
the codebook training and feature encoding process. Fisher
encoding[15] and Super vector encoding[20] are proposed
to capture the average first and second order differences be-
tween local features and their distribution centres modeled
by Gaussian Mixture Models. However, all the above meth-
ods only use the cluster centers to represent the feature dis-
tribution, which is limited in the high-dimensional feature
space, and the local structures of the features is totally ne-
glected in the feature encoding phase. In this paper, we
mainly consider to incorporate some local structure infor-
mation of the feature space to improve the discrimination
of the BoW model.

3. Method

3.1. BoW Model Revisited

In this section, we briefly review the image classification
pipeline based on the BoW model, which mainly consists of
two procedures of coding and spatial pooling. Specifically,
we will focus on the coding section.

3.1.1 Coding

Starting from the raw images, the local features such as
SIFT are extracted firstly, usually in the densely sampling
scheme. Then two phases are needed to encode them into
distinct visual words: codebook learning and feature encod-
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ing.
For learning the codebook, a sampled feature set is need-

ed by randomly sampling from the features of the whole
images. In standard BoW model, the K-means algorithm
is applied to cluster the sampled features into V clusters,
which is considered as the visual codebook. We denote the
sampled feature set as X = [x1, x2, . . . , xN ](N >> V ),
and the centroids of the clusters as C = [c1, c2, . . . , cV ]. In
the Kmeans algorithm, the features are hard-assigned to the
nearest centroid:

fv(x) =

{
1 if v = argminiD(x, ci)

0 otherwise
(1)

The mapping function fv(x) here is also known as the stan-
dard 1-of-V hard-assignment coding scheme.

With the learned over-complete (V >>the dimension of
feature) codebook, the local patches of each image are then
encoded into the visual codewords using the 1-of-V hard-
assignment scheme, which is a maximally sparse represen-
tation that has been most frequently used. It is generally be-
lieved that having an over-complete codebook while keep-
ing the activations sparse helps classification. However, the
hard-assignment may be too restricted with too much infor-
mation loss and discriminative power reduced.

3.1.2 Spatial Pooling

After encoding the local patches into sparse codes, the glob-
al BoW representations are then generated by the max pool-
ing or average pooling operation. The BoW model thus
describes an image as an orderless statistics of local fea-
tures, while the spatial layout of the features is completely
neglected. To embed the spatial information, [9] proposed
the Spatial Pyramid Matching(SPM) model, which has been
shown effective for image classification. The SPM model
requires to first partition each image into a sequence of in-
creasingly finer uniform grids (i.e.1× 1, 2× 2, 4× 4). The
spatial pooling operation is then applied within each grid
to get the representation for each region. The BoW rep-
resentation for each grids are concatenated to form a high
dimensional image feature.

Finally, a classifier, usually SVM is trained using the
global image feature to predict the final label of the image.
The most commonly used kernel functions are linear, χ2 or
histogram intersection.

3.2. Codebook Learning with Neighborhood Infor
mation

The traditional dictionary learning methods all try to
learn several cluster centroids as the codebook to encode
each feature, which is only able to capture the global struc-
ture or statistic property of the feature space. As shown in
Fig.1, the local structure or distribution is very important

to assign the feature into a reasonable visual codeword es-
pecially in the very high-dimensional and complex feature
space. To this end, we propose to incorporate the neigh-
boring information into the feature assignment scheme to
roughly indicate some local structure of the feature distri-
bution. To relax the too restricted 1-of-V hard-assignment
scheme, we also adopt the soft-assignment scheme, which
assigns a certain feature into several nearest clusters.

We firstly reformulate the 1-of-V hard-assignment
scheme in a probability perspective. To a feature point x,
the probability to assign it into the v-th cluster is:

pcentroid(x → cv) =
Kσ(D(x, cv))∑V
v Kσ(D(x, cv))

(2)

where K is a kernel function to smooth the local neigh-
borhood of the data sample. In this paper, we use the
SIFT descriptor that draws on the Euclidean distance as
the distance function D, which assumes a Gaussian dis-
tribution. Hence, we adopt the Gaussian-shaped kernel
Kσ(x) = 1√

2πσ
exp(− 1

2
x2

σ2 ) as the kernel function. The
Gaussian-shaped kernel has a smoothing parameter σ rep-
resenting the size of the kernel, which determines the degree
of similarity between feature samples, dependent on the da-
ta set, the feature dimensionality and the range of the feature
values. Therefore, we tune the parameter discriminatively
by cross validation in our experiments.

With the probability defined above, the hard-assignment
is:

fv(x) =

{
1 if v = argmaxi pcentroid(x → ci)

0 otherwise
(3)

the feature is assigned to the codeword with the maximum
probability, which is equivalent to the Eq.1.

We propose to incorporate some local structure informa-
tion into the feature assignment process, as a complement
to the hard-assignment based on the centroids of the feature
clusters. Since it is difficult to exactly model the local struc-
ture in the high-dimensional space, we only consider the
neighborhood of the certain feature for simplicity, to rough-
ly indicate some local information. Given a feature x, we
firstly find out the k nearest neighbors in the sampled fea-
ture set, which is denoted as {xn1 , xn2 , xn3 , . . . , xnk

}, and
if xni is belonged to the j-th cluster we denote it as xni,j .
Thus we define the probability function to assign a certain
feature x into the v-th cluster considering the influence of
the k nearest neighbors as:

pknn(x → cv) =

∑
i Kσ(D(x, xni,v))∑
j Kσ(D(x, xnj ))

(4)

In this probability function, we assume that the assignment
of the certain feature x is determined by the distribution of
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the k nearest neighbors. We both consider the number and
the distance of the neighboring features in the certain clus-
ter. The feature is tended to be encoded into the cluster in
which there are more neighboring features assigned into the
cluster and the feature is more close to these features. We
call this definition as the neighborhood information term.

In order to train a more robust and semantical visual
codebook, we combine the neighborhood information with
the traditional K-means algorithm. In the probability refor-
mulation, it is very nature to combine the centroid-based
assignment term and the neighborhood information term.
Thus the combined probability to assign the feature into the
v-th cluster is defined as:

p(x → cv) = pcentroid(x → cv) + λpknn(x → cv) (5)

where λ is the tradeoff coefficient.
To relax the too restricted sparsity of the hard assign-

ment in K-means, we adopt the soft-assignment scheme
which assigns the feature into several clusters according to
the probability, regarding the probability as the weights of
the feature point in the cluster:

fv(x) = p(x → cv) (6)

We conclude our codebook training procedure in Algo-
rithm 1. Note that in the algorithm, we firstly run several
standard k-means iterations to initialize the centroids of the
clusters which we find helpful to improve the performance
in our experiments.

Algorithm 1 K-means with neighboring information
Input:

feature set X , codebook size V , tradeoff coefficient λ,
number of soft assignment θ, max iterations I

Output:
codebook C = {c1, c2, . . . , cv}

1: Init C using standard k-means
2: for iter = 1 : I do
3: Update the soft assignment for each feature x using

Eq.5 and Eq. 6
4: Update the codebook C: cv = 1

Nv

∑
i fv(xvi

)xvi

5: Stop the process when the update of new centroids
reach convergence criteria

6: end for

3.3. Feature Encoding with Neighborhood Informa
tion

Given the visual codebook, we then encode the local fea-
tures of the images according to the mapping function. As
the centroids of the codebook is too limited to represent the
structure of the codebook, we combine the neighborhood
information as described in Eq.5. The training feature set X

should be remained in the coding phase, since the k nearest
neighbors in the feature set should be found out firstly for a
given feature, which is different from the traditional coding
method. Note that our model can be applied to both hard-
assignment and soft-assignment scheme, we will both in-
vestigate the two coding scheme in our experiments. In the
hard-assignment scheme, we assign the feature point to the
codebook with the maximum probability according to Eq.
5 while keeping others zero, while the soft-assignment as-
signs the feature to several codeword with max assignment
probability. A normalization operation is usually needed in
the soft-assignment scheme.

4. Experiments and Results
In the experiments, we mainly compare our method with

the popular kernel SPM[9] on two popular datasets, 15-
Scenes and Caltech-101. We start our experiments with
an in-depth analysis of our methods on the dataset of 15-
Scenes, after which we transpose these findings to the ex-
periments on the Caltech-101. First, we evaluate the effec-
tiveness our method in the codebook training phase. Then
we investigate the hard-assignment and soft-assignment
scheme with the proposed neighborhood information term
incorporated. For our experimental setup we closely follow
Lazebnik et al.[9] for fair comparison. We use a single local
descriptor, the popular SIFT descriptor, by densely extract-
ing local patches of 16 × 16 pixels computed over a grid
with spacing of 8 pixels. When training SVM classifier, we
apply the histogram intersection kernel and use the well im-
plemented LIBSVM[2] package. The SVM regularization
terms are chosen via 5-flod cross validation on the training
data. The detailed comparisons and analysis are presented
in the following subsections.

4.1. Results on 15Scenes Dataset

We firstly experiment with a popular scene classifica-
tion benchmark, 15-Scenes dataset, complied by several
researchers[6][9]. The dataset is composed of 15 scene
classes (e.g. kitchen, coast, highway), with each class con-
taining 200 to 400 images and there are 4485 gray-scale im-
ages in total. Following the experiment setup of [9], we take
100 images per class for training and the rest for testing, and
the size of the visual codebook is fixed to 400. The final
SVM classifier are trained in the one-versus-others scheme
and the image is classified to the category with the max s-
core.

4.1.1 The Effect of the Neighborhood Information on
the Ccodebook Learning

We first evaluate the effect of the neighborhood informa-
tion term in Eq.4 on the codebook training phase, while
we apply the traditional 1-of-V hard-assignment scheme in
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Figure 2. Performance comparisons on the 15-Scenes to investi-
gate the effect of the neighborhood information on the codebook
training with varying tradeoff coefficient λ.

the coding phase for fair comparison. We randomly sam-
ple 10, 000 SIFT features from the features extracted from
the whole images. The tradeoff term λ in the Eq.5 con-
trols the proportion of the neighborhood information ter-
m: the bigger λ is, the more the neighborhood information
contribute to the assignment probability. Thus we evaluate
the effect of the neighborhood information term by vary-
ing the tradeoff term λ, as shown in Fig.2. K-means+NIH
denotes the proposed method of the improved K-means
with the neighborhood information and hard-assignment
scheme, while K-means+NIS denotes the method of the
improved K-means with the neighborhood information and
soft-assignment scheme. Note that when λ equals 0, the
algorithm degenerates to the standard K-means, and when
λ is large enough the assignment is almost dependent on
the neighborhood term. It is shown that incorporating the
neighborhood term does help to improve the performance.
The K-means+NIS outperforms the other two methods and
the best performance are achieved with well balanced co-
efficient. Empirically, we found that keeping the tradeoff
term λ to be around 0.7 yields good results.

4.1.2 The Effect of the Neighborhood Information on
the Feature Encoding

Then we investigate the performance of various types
of feature encoding scheme with the codebook training
method fixed to K-means in our experiments, which is
shown in Fig.3. Similar to the above experiment, we vary
the tradeoff coefficient λ to evaluate the effect of the neigh-
borhood information term. In Fig.3, HA denotes the tra-
ditional hard-assignment method, and SA denotes the tradi-
tional soft-assignment method. HA+NI and SA+NI denotes
the hard-assignment and soft-assignment scheme combined
with the proposed neighborhood information term respec-
tively. It is shown that the soft-assignment scheme outper-
forms the hard-assignment in general. The neighborhood
information term really helps to improve the classification
accuracy, which is not very sensitive to the tradeoff parame-
ter λ. The best performance is achieved when the parameter

Figure 3. Performance comparisons on the 15-Scenes to investi-
gate the effect of different coding scheme varying tradeoff coeffi-
cient λ.

Table 1. Classification rate (%) comparison on 15-Scenes.

Method Codebook Encoding Classification Rate
KSPM[9] K-means HA 81.40± 0.50

ScSPM[19] SC SC 80.28± 0.93
KSPM K-means HA 80.10± 0.71
KSPM K-means SA 80.90± 0.36
Ours K-means SA+NI 82.81± 0.31
Ours K-means+NIS HA 82.32± 0.23
Ours K-means+NIS SA+NI 83.23± 0.22

λ is around 0.8. As shown in the figure, when λ is large,
the performance is still slightly better than the traditional
method, further indicating the importance of the neighbor-
hood term.

Finally, we summarize the comparisons of differen-
t methods we implemented in Table 1. We repeat every
method 5 times and report the mean and standard deviation
of the mean class accuracy. Note that our implementations
of KSPM are not able to reproduce the results reported in [9]
probably due to the SIFT descriptor extraction and normal-
ization process. The best performance is achieved by using
K-means+NIS in the codebook training phase and SA+NI
in the feature encoding phase. Our method outperforms the
KSPM by more than 3% according to our implementation-
s. It is noted that our method also outperforms ScSPM[19]
which adopts the Sparse Coding (SC) to learn the codebook
and encode the local patches. The improvement of our sim-
ple scheme to roughly incorporate the neighborhood infor-
mation has shown the importance of the local structure of
the features in the codebook training and feature encoding
phase.

4.2. Results on Caltech101 Dataset

We conduct our second set of experiments on the
Caltech-101 dataset[5]. The Caltech-101 dataset contains
9144 images totally from 102 different categories, including
101 object categories and 1 additional background category
with high shape variability. The number of images per cat-
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Table 2. Classification rate (%) comparison on Caltech-101.

Method 15 training 30 training
KSPM[9] 56.40 64.6± 0.80
KC[16] — 64.14± 1.18
KSPM 56.13± 0.30 63.70± 0.35
Ours 58.53± 0.23 66.52± 0.36

egory varies from 31 to 800, and most images are medium
resolution, i.e. about 300 × 300 pixels. We follow the ex-
periment setup of [9], namely, training on 15 and 30 images
per class and test on the rest. For efficiency, we limit the
number of test images to 50 per class. We randomly sample
from the whole local features to get a feature set contain-
ing 10, 000 local features to tain the codebook with the size
fixed to 1000. We repeat every method 5 times and report
the mean and standard deviation of the mean class accuracy.

The performance comparison results are shown in Ta-
ble 2. We use the empirical parameter values in the 15-
Scenes experiments. The best performance of our method
is achieved by using Kmeans+NIS to train the codebook and
SA+NI to encode the features. As shown, our method out-
performs the baseline by more than 2 percent for both 15
training and 30 training per category.

5. Conclusion
In this paper, we address the issue of the determination of

visual words in the BoW image classification model. As the
local structure of the features are neglected in the existing
algorithms, we propose a neighborhood information mod-
el to roughly indicate the local distribution. Then we com-
bine the proposed model with the standard K-means method
to improve the process of the codebook learning. In the
feature encoding phase, our model is also able to incorpo-
rated into the hard-assignment and soft-assignment method
to improve the robustness and discrimination. The exper-
iments on 15-Scenes and Caltech-101 datasets have shown
the effect of the incorporated neighborhood information ter-
m, and our method outperforms the traditional BoW model.
Possible future work involves more carefully engineered lo-
cal structures of the feature space, and unsupervised learn-
ing of such information. Another interesting direction is to
incorporate the neighborhood information into the frame-
work of the sparse coding or local coordinate coding.
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[14] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative
study of texture measures with classification based on fea-
tured distributions. Pattern Recognition, 29(1):51–59, 1996.

[15] F. Perronnin, J. Snchez, and T. Mensink. Improving the fisher
kernel for large-scale image classification. In ECCV, 2010.

[16] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and
A. W. M. Smeulders. Kernel codebooks for scene catego-
rization. In ECCV, 2008.

[17] J. C. van Gemert, C. J. Veenman, A. W. M. Smeulder-
s, and J. M. Geusebroek. Visual word ambiguity. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
32(7):1271–1283, 2010.

[18] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, 2010.

[19] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-
mid matching using sparse coding for image classification.
In CVPR, 2009.

[20] X. Zhou, K. Yu, T. Zhang, T. S. Huang, and T. S. Huang.
Image classification using super-vector coding of local image
descriptors. In ECCV, 2010.

6


